設(shè)f(x)=cosx,f1(x)=f′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,則f2010(x)=( )
A.sin
B.-sin
C.cos
D.-cos
【答案】分析:分別求出f1(x),f2(x),f3(x),f4(x),…的導(dǎo)數(shù),通過(guò)觀察發(fā)現(xiàn)fn(x)的值周期性重復(fù)出現(xiàn),周期為4,所以用2010除以4得到余數(shù)為2,所以f2010(x)=f2(x),求出即可.
解答:解:∵f1(x)=(cosx)′=-sinx,
f2(x)=(-sinx)′=-cosx,
f3(x)=(-cosx)′=sinx,
f4(x)=(sinx)′=cosx,…,
由此可知fn(x)的值周期性重復(fù)出現(xiàn),周期為4,
故f2010(x)=f2(x)=-cosx.
故選D
點(diǎn)評(píng):考查學(xué)生會(huì)進(jìn)行導(dǎo)數(shù)的運(yùn)算,會(huì)根據(jù)條件歸納總結(jié)得到結(jié)論,并利用得到的結(jié)論解決問(wèn)題.