【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數方程為:
(t為參數),直線l與曲線C分別交于
兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若點,求
的值.
科目:高中數學 來源: 題型:
【題目】已知函數,給出下列四個結論:
①函數的最小正周期是
;
②函數在區間
上是減函數;
③函數的圖象關于直線
對稱;
④函數的圖象可由函數
的圖象向左平移
個單位得到其中所有正確結論的編號是( )
A.①②B.①③C.①②③D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:在長方體中,
,點
是線段
上的一個動點,則①
的最小值等于__________;②直線
與平面
所成角的正切值的取值范圍為____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某調查機構對全國互聯網行業進行調查統計,得到整個互聯網行業從業者年齡分布餅狀圖、90后從事互聯網行業者崗位分布條形圖,則下列結論中不一定正確的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A. 互聯網行業從業人員中90后占一半以上
B. 互聯網行業中從事技術崗位的人數超過總人數的20%
C. 互聯網行業中從事運營崗位的人數90后比80前多
D. 互聯網行業中從事技術崗位的人數90后比80后多
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an},對任意n∈N*都有(kn+b)(a1+an)+p=2(a1+a2…+an),(其中k、b、p是常數).
(1)當k=0,b=3,p=﹣4時,求a1+a2+a3+…+an;
(2)當k=1,b=0,p=0時,若a3=3,a9=15,求數列{an}的通項公式;
(3)若數列{an}中任意(不同)兩項之和仍是該數列中的一項,則稱該數列是“封閉數列”.當k=1,b=0,p=0時,設Sn是數列{an}的前n項和,a2﹣a1=2,試問:是否存在這樣的“封閉數列”{an},使得對任意n∈N*,都有Sn≠0,且.若存在,求數列{an}的首項a1的所有取值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一個有窮數列的每相鄰兩項之間插入這兩項的和,形成新的數列,我們把這樣的操作稱為該數列的一次“Z拓展”.如數列1,2第1次“Z拓展”后得到數列1,3,2,第2次“Z拓展”后得到數列1,4,3,5,2.設數列a,b,c經過第n次“Z拓展”后所得數列的項數記為Pn,所有項的和記為Sn.
(1)求P1,P2;
(2)若Pn≥2020,求n的最小值;
(3)是否存在實數a,b,c,使得數列{Sn}為等比數列?若存在,求a,b,c滿足的條件;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司人數眾多
為鼓勵員工利用網絡進行營銷,準備為員工辦理手機流量套餐.為了解員工手機流量使用情況,按照男員工和女員工
的比例分層抽樣,得到
名員工的月使用流量
(單位:
)的數據,其頻率分布直方圖如圖所示.
(1)求的值,并估計這
名員工月使用流量的平均值
(同一組中的數據用中點值代表
;
(2)若將月使用流量在以上(含
)的員工稱為“手機營銷達人”,填寫下面的
列聯表,能否有超過
的把握認為“成為手機營銷達人與員工的性別有關”;
男員工 | 女員工 | 合計 | |
手機營銷達人 | 5 | ||
非手機營銷達人 | |||
合計 | 200/span> |
參考公式及數據:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(3)若這名員工中有
名男員工每月使用流量在
,從每月使用流量在
的員工中隨機抽取名
進行問卷調查,記女員工的人數為
,求
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com