日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點F是PB的中點,點E在邊BC上移動.
(Ⅰ)求三棱錐E-PAD的體積;
(Ⅱ)當點E為BC的中點時,試判斷EF與平面PAC的位置關系,并說明理由;
(Ⅲ)證明:無論點E在邊BC的何處,都有PE⊥AF.
【答案】分析:本題考查了空間幾何體的體積、線面位置關系的判定、線面垂直等知識點,
(Ⅰ)利用換底法求VP-ADE即可;(Ⅱ)利用三角形的中位線及線面平行的判定定理解決;
(Ⅲ)通過證明AF⊥平面PBE即可解決.
解答:解:(Ⅰ)三棱錐E-PAD的體積.(4分)
(Ⅱ)當點E為BC的中點時,EF與平面PAC平行.(5分)
∵在△PBC中,E、F分別為BC、PB的中點,
∴EF∥PC,又EF?平面PAC,而PC?平面PAC,
∴EF∥平面PAC.(8分)
(Ⅲ)證明:
∵PA⊥平面ABCD,BE?平面ABCD,
∴EB⊥PA,又EB⊥AB,AB∩AP=A,AB,AP?平面PAB,
∴EB⊥平面PAB,又AF?平面PAB,
∴AF⊥BE.(10分)
又PA=AB=1,點F是PB的中點,
∴AF⊥PB,
又∵PB∩BE=B,PB,BE?平面PBE,
∴AF⊥平面PBE.
∵PE?平面PBE,
∴AF⊥PE.(12分)
點評:無論是線面平行(垂直)還是面面平行(垂直),都源自于線與線的平行(垂直),這種“高維”向“低維”轉化的思想方法,在解題時非常重要,在處理實際問題的過程中,可以先從題設條件入手,分析已有的平行(垂直)關系,再從結論入手分析所要證明的平行(垂直)關系,從而架起已知與未知之間的橋梁.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M,N分別是AB,PC的中點.
(1)求二面角P-CD-B的大小;
(2)求證:平面MND⊥平面PCD;
(3)求點P到平面MND的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點.
(Ⅰ)求證:AF∥平面PCE;
(Ⅱ)若二面角P-CD-B為45°,AD=2,CD=3,求點F到平面PCE的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,PA⊥平面ABC,AC⊥BC,AB=2,BC=
2
,PB=
6

(1)證明:面PAC⊥平面PBC
(2)求二面角P-BC-A的大小
(3)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•天津模擬)如圖,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD與平面ABCD所成的角是30°,點
F是PB的中點,點E在邊BC上移動,
(Ⅰ)當點E為BC的中點時,試判斷EF與平面PAC的位置關系,并說明理由;
(Ⅱ)證明:無論點E在邊BC的何處,都有PE⊥AF;
(Ⅲ)當BE等于何值時,二面角P-DE-A的大小為45°?

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,PD與平面ABCD所成的角是30°,點F是PB的中點,點E在邊BC上移動.
(1)當點E為BC的中點時,試判斷EF與平面PAC的位置關系,并求出EF到平面PAC的距離;
(2)命題:“不論點E在邊BC上何處,都有PE⊥AF”,是否成立,并說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产欧美一区二区精品性色 | 亚洲网在线 | 精品免费视频一区二区 | 一区二区三区在线观看视频 | 在线免费观看一区 | 欧美成人在线网站 | 一区二区精品 | 精品久久久久久久久久久久久久 | 久在线观看 | 欧美欧美欧美 | 四虎4hu新地址入口2023 | 成人精品国产免费网站 | 国产一区国产二区在线观看 | 香蕉久久网 | 九九九九九九精品 | 亚洲三级网 | 极品女神高潮呻吟av久久 | 日本高清视频一区二区三区 | 久久久www成人免费精品 | 欧美一区www | 亚洲精品一区中文字幕乱码 | 欧美黄视频在线观看 | 国产高清在线精品一区 | 国产精品久久久久毛片软件 | 一区二区三区免费 | 在线播放黄色 | 久久综合九九 | 黑色丝袜脚足j国产在线看68 | 成人黄色电影小说 | 美日韩在线观看 | 欧美日韩1区2区3区 www.日韩精品 | 99精品国产在热久久 | 亚洲大片69999 | 日韩成人在线网站 | 亚洲自拍偷拍电影 | 亚洲一区二区 | 欧美日韩国产精品久久久久 | 久久久不卡 | 久久综合狠狠综合久久综合88 | 国产精品免费看 | 精品欧美一二三区 |