【題目】已知極點與直角坐標系原點重合,極軸與x軸的正半軸重合,圓C的極坐標方程為,直線l的參數方程為
為參數
.
若
,直線l與x軸的交點為M,N是圓C上一動點,求
的最小值;
若直線l被圓C截得的弦長等于圓C的半徑,求a的值.
科目:高中數學 來源: 題型:
【題目】設函數,
(其中
,
,
),在
上既無最大值,也無最小值,且
,則下列結論成立的是( )
A.若對任意
,則
B.的圖象關于點
中心對稱
C.函數的單調減區間為
D.函數的圖象相鄰兩條對稱軸之間的距離是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個截面,若截面為平行四邊形.
(1)求證:AB∥平面EFGH
(2)若AB=4,CD=6,求四邊形EFGH周長的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續教育、大病醫療、住房貸款利息或者住房租金、贍養老人等六項專項附加扣除.某單位老、中、青員工分別有人,現采用分層抽樣的方法,從該單位上述員工中抽取
人調查專項附加扣除的享受情況.
(Ⅰ)應從老、中、青員工中分別抽取多少人?
(Ⅱ)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為.享受情況如右表,其中“
”表示享受,“×”表示不享受.現從這6人中隨機抽取2人接受采訪.
員工 項目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
繼續教育 | × | × | ○ | × | ○ | ○ |
大病醫療 | × | × | × | ○ | × | × |
住房貸款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
贍養老人 | ○ | ○ | × | × | × | ○ |
(i)試用所給字母列舉出所有可能的抽取結果;
(ii)設為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件
發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產甲、乙兩種產品所得利潤分別為和
(萬元),它們與投入資金
(萬元)的關系有如下公式:
,
,今將200萬元資金投入生產甲、乙兩種產品,并要求對甲、乙兩種產品的投入資金都不低于25萬元.
(Ⅰ)設對乙種產品投入資金(萬元),求總利潤
(萬元)關于
的函數關系式及其定義域;
(Ⅱ)如何分配投入資金,才能使總利潤最大,并求出最大總利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{}是公差不為0的等差數列,其中a1=1,且a2,a3,a6成等比數列.
(1)求數列{}的通項公式;
(2)記是數列{
}的前n項和,是否存在n∈N﹡,使得
+9n+80<0成立?若存在,求n的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,SA=SB= SC=2,AB=2,設S、A、B、C四點均在以O為球心的某個球面上。則點O到平面ABC的距離為________________。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程
已知曲線的參數方程為
(
為參數),以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求曲線的直角坐標方程及曲線
上的動點
到坐標原點
的距離
的最大值;
(Ⅱ)若曲線與曲線
相交于
,
兩點,且與
軸相交于點
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com