【題目】設函數f(x)=x3﹣12x+4,x∈R.
(1)求f(x)的單調區間和極值;
(2)若關于x的方程f(x)=a有3個不同實根,求實數a的取值范圍.
【答案】
(1)解:∵f(x)=x3﹣12x+4,
∴f′(x)=3x2﹣12=3(x+2)(x﹣2)
令f′(x)=0得:x1=﹣2,x2=2
當x變化時,f'(x),f(x)的變化情況如下表:
x | (﹣∞,﹣2) | ﹣2 | (﹣2,2) | 2 | (2,+∞) |
f'(x) | + | 0 | ﹣ | 0 | + |
f(x) | 增 | 極大 | 減 | 極小 | 增 |
所以f(x)的增區間是(﹣∞,﹣2)和(2,+∞),減區間是(﹣2,2);
當x=﹣2時,f(x)取得極大值,極大值f(﹣2)=20;
當x=2時,f(x)取得極小值,極小值f(2)=﹣12
(2)解:由(1)可知y=f(x)圖象的大致形狀及走向:
∴當﹣12<a<20時,直線y=a與y=f(x)的圖象有3個不同交點,
即當﹣12<a<20時方程f(x)=a有三解
【解析】(1)求出函數的導函數,進而分析導函數在不同區間上的符號,進而根據導函數為正,對應函數的單調遞增區間;導函數為負,對應函數的單調遞減區間,得到f(x)的單調區間;再由左增右減對應函數的極大值,左減右增,對應函數的極小值,得到f(x)的極值;(2)由(1)作出函數f(x)的草圖,進而得到方程f(x)=a有3個不同實根,可轉化為a值,介于函數的兩極值之間,進而得到實數a的取值范圍.
【考點精析】關于本題考查的利用導數研究函數的單調性和函數的極值與導數,需要了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若對于任意x∈R,都有f(x﹣2)≤f(x),則實數a的取值范圍是( )
A.[﹣ ,
]
B.[﹣ ,
]
C.[﹣ ,
]
D.[﹣ ,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子裝有六張卡片,上面分別寫著如下六個定義域為的函數:
(1)現從盒子中任取兩張卡片,將卡片上的函數相加得一個新函數,求所得函數是奇函數的概率;
(2)現從盒子中進行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數的卡片則停止抽取,否則繼續進行,求抽取次數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρcos(θ﹣ )=1,A,B分別為C與x軸,y軸的交點.
(1)寫出C的直角坐標方程,并求A,B的極坐標;
(2)設M為曲線C上的一個動點, =λ
(λ>0),|
||
|=2,求動點Q的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市出租車收費標準如下:①起步價3km(含3km)為10元;②超過3km以外的路程按2元/km收費;③不足1km按1km計費.
(1)試寫出收費y元與x(km)(0<x≤5)之間的函數關系式;
(2)若某人乘出租車花了24元錢,求此人乘車里程xkm的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
,焦點
,
為坐標原點,直線
(不垂直
軸)過點
且與拋物線
交于
兩點,直線
與
的斜率之積為
.
(1)求拋物線的方程;
(2)若為線段
的中點,射線
交拋物線
于點
,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com