分析 設z=a+bi(其中a,b∈R),則$\overline{z}$=a-bi.利用復數運算和復數相等即可得出答案.
解答 解:設z=a+bi(其中a,b∈R),則$\overline{z}$=a-bi.
由題意得:$\left\{\begin{array}{l}{a+bi-(a-bi)=2i}\\{a-bi=i(a+bi)}\end{array}\right.$,
即$\left\{\begin{array}{l}{bi=i}\\{a-bi=ai-b}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$.
∴z=-1+i.
故答案為:-1+i.
點評 本題考查復數代數形式的乘除運算,考查計算能力,是基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{4}{3}$ | D. | $\frac{14}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=x,g(x)=($\sqrt{x}$)2 | B. | f(x)=x2,g(x)=(x+1)2 | C. | f(x)=0,g(x)=$\sqrt{x-1}+\sqrt{1-x}$ | D. | f(x)=$\sqrt{{x}^{2}}$,g(x)=|x| |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com