如圖所示,已知橢圓=1(a>b>0)的右焦點為F2(1,0),點A
在橢圓上.
(1)求橢圓方程;
(2)點M(x0,y0)在圓x2+y2=b2上,點M在第一象限,過點M作圓x2+y2=b2的切線交橢圓于P、Q兩點,問||+|
|+|
|是否為定值?如果是,求出該定值;如果不是,說明理由.
科目:高中數學 來源: 題型:解答題
已知頂點為原點的拋物線
的焦點
與橢圓
的右焦點重合
與
在第一和第四象限的交點分別為
.
(1)若△AOB是邊長為的正三角形,求拋物線
的方程;
(2)若,求橢圓
的離心率
;
(3)點為橢圓
上的任一點,若直線
、
分別與
軸交于點
和
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心為平面直角坐標系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的一點,=λ,求點M的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若兩個橢圓的離心率相等,則稱它們為“相似橢圓”.如圖,在直角坐標系xOy中,已知橢圓C1:=1,A1,A2分別為橢圓C1的左、右頂點.橢圓C2以線段A1A2為短軸且與橢圓C1為“相似橢圓”.
(1)求橢圓C2的方程;
(2)設P為橢圓C2上異于A1,A2的任意一點,過P作PQ⊥x軸,垂足為Q,線段PQ交橢圓C1于點H.求證:H為△PA1A2的垂心.(垂心為三角形三條高的交點)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C的頂點為O(0,0),焦點為F(0,1).
(1)求拋物線C的方程;
(2)過點F作直線交拋物線C于A,B兩點.若直線AO、BO分別交直線l:y=x-2于M、N兩點,求|MN|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知A,B,C是橢圓W:+y2=1上的三個點,O是坐標原點.
(1)當點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,焦距為的橢圓
的兩個頂點分別為
和
,且
與n
,
共線.
(1)求橢圓的標準方程;
(2)若直線與橢圓
有兩個不同的交點
和
,且原點
總在以
為直徑的圓的內部,
求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系.已知曲線
的極坐標方程為
,直線
的參數方程為
為參數,
).
(1)化曲線的極坐標方程為直角坐標方程;
(2)若直線經過點
,求直線
被曲線
截得的線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓C的中心在原點,焦點在x軸上,離心率為,且過點
,點A、B分別是橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于
軸上方,
.
(1)求橢圓C的方程;
(2)求點P的坐標;
(3)設M是直角三角PAF的外接圓圓心,求橢圓C上的點到點M的距離的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com