日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

在圖(1)所示的長方形ABCD中,AD=2AB=2,E、F分別為AD、BC的中點,M、N兩點分別在AF和CE上運動,且AM=EN=a(0<a<
2
)
.把長方形ABCD沿EF折成大小為θ的二面角A-EF-C,如圖(2)所示,其中θ∈(0,
π
2
]

精英家教網(wǎng)

(1)當(dāng)θ=45°時,求三棱柱BCF-ADE的體積;
(2)求證:不論θ怎么變化,直線MN總與平面BCF平行;
(3)當(dāng)θ=900a=
2
2
.時,求異面直線MN與AC所成角的余弦值.

精英家教網(wǎng)
(1)依題意得EF⊥DE,EF⊥AE,∴EF⊥平面ADE,∠DEA=θ.
由θ=45°得,S△ADE=
1
2
DE•EAsin45°=
2
4

VBCF-ADE=S△ADE•EF=
2
4

(2)證法一:過點M作MM1⊥BF交BF于M1
過點N作NN1⊥CF交BF于N1,連接M1N1
∵MM1AB,NN1EF∴MM1NN1
又∵
MM1
AB
=
FM
FA
=
CN
CE
=
NN1
EF
,∴MM1=NN1
∴四邊形MNN1M1為平行四邊形,
∴MNN1M1,又MN?面BCF,N1M1?面BCF,∴MN面BCF.
證法二:過點M作MG⊥EF交EF于G,連接NG,則
CN
NE
=
FM
MA
=
FG
GE
,∴NGCF.
精英家教網(wǎng)

又NG?面BCF,CF?面BCF,∴NG面BCF,
同理可證得MG面BCF,又MG∩NG=G,∴平面MNG平面BCF,
∵MN?平面MNG,∴MN面BCF.
(3)證法一:取CF的中點為Q,連接MQ、NQ,則MQAC,
∴∠NMQ或其補角為異面直線MN與AC所成的角,
∵θ=900a=
2
2
.∴NQ=
1
2
MQ=
(
1
2
)
2
+(
2
2
)
2
=
3
2
MN=
2
2
,--
精英家教網(wǎng)
--
cos∠NMQ=
QM2+MN2-NQ2
2MN•QM
=
6
3

即MN與AC所成角的余弦值為
6
3

證法二:∵θ=900a=
2
2

分別以FE、FB、FC所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系.A(1,1,0),C(0,0,1),M(
1
2
1
2
,0),N(
1
2
,0,
1
2
),得
AC
=(-1,-1,1),
MN
=(0,-
1
2
1
2
)

cos<
AC
MN
>=
1
3
2
2
=
6
3

所以與AC所成角的余弦值為
6
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽二模)在圖(1)所示的長方形ABCD中,AD=2AB=2,E、F分別為AD、BC的中點,M、N兩點分別在AF和CE上運動,且AM=EN=a(0<a<
2
)
.把長方形ABCD沿EF折成大小為θ的二面角A-EF-C,如圖(2)所示,其中θ∈(0,
π
2
]

(1)當(dāng)θ=45°時,求三棱柱BCF-ADE的體積;
(2)求證:不論θ怎么變化,直線MN總與平面BCF平行;
(3)當(dāng)θ=900a=
2
2
.時,求異面直線MN與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•日照一模)已知長方形EFCD,|EF|=2,|FC|=
2
2
.以EF的中點O為原點,建立如圖所示的平面直角坐標(biāo)系xOy.
(Ⅰ)求以E,F(xiàn)為焦點,且過C,D兩點的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在(I)的條件下,過點F做直線l與橢圓交于不同的兩點A、B,設(shè)
FA
FB
,點T坐標(biāo)為(2,0),若λ∈[-2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《立體幾何》2013年廣東省十二大市高三二模數(shù)學(xué)試卷匯編(理科)(解析版) 題型:解答題

在圖(1)所示的長方形ABCD中,AD=2AB=2,E、F分別為AD、BC的中點,M、N兩點分別在AF和CE上運動,且AM=EN=a.把長方形ABCD沿EF折成大小為θ的二面角A-EF-C,如圖(2)所示,其中
(1)當(dāng)θ=45°時,求三棱柱BCF-ADE的體積;
(2)求證:不論θ怎么變化,直線MN總與平面BCF平行;
(3)當(dāng)θ=90.時,求異面直線MN與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年廣東省揭陽市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

在圖(1)所示的長方形ABCD中,AD=2AB=2,E、F分別為AD、BC的中點,M、N兩點分別在AF和CE上運動,且AM=EN=a.把長方形ABCD沿EF折成大小為θ的二面角A-EF-C,如圖(2)所示,其中
(1)當(dāng)θ=45°時,求三棱柱BCF-ADE的體積;
(2)求證:不論θ怎么變化,直線MN總與平面BCF平行;
(3)當(dāng)θ=90.時,求異面直線MN與AC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 久久久亚洲一区 | 亚洲欧美日韩另类精品一区二区三区 | 中国一级免费毛片 | 久久精品久久久久电影 | a一级片在线观看 | 欧美国产日本 | 成人精品在线视频 | 国产精品不卡一区 | 国产精品久久久久久久 | 精品在线播放 | 天天综合天天色 | 美女黄视频网站 | 米奇av| avav在线看 | 插插插干干干 | 午夜激情视频 | 一区二区三区自拍 | 亚洲性爰| 国产精品久久久久久久久久东京 | 国产一级一级片 | 国产综合精品一区二区三区 | 国产成人高清视频 | 欧美精品三区 | 男女视频在线观看 | 成人观看免费视频 | 中文字幕日韩欧美 | 九九综合九九 | 成人欧美一区二区三区黑人孕妇 | 久久大 | 色呦呦在线 | 日韩中文一区 | 一区二区三区在线 | 欧 | 91在线电影 | 中文字幕在线网址 | 中文字幕av第一页 | 高清国产午夜精品久久久久久 | 成人精品视频一区二区三区 | 久久影视网 | 精品免费视频 | 久久久久久高潮国产精品视 | 五月婷婷综合激情 |