日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知△ABC中,角A,B,C所對的邊分別為a,b,c,外接圓半徑是1,且滿足條件2(sin2A-sin2C)=(sinA-sinB)b,則△ABC的面積的最大值為( 。
分析:由正弦定理結合R=1,化簡已知等式得到a2+b2-c2=ab,利用余弦定理算出cosC=
1
2
,從而可得C=60°.再利用基本不等式求出ab≤3,用正弦定理的面積公式即可算出△ABC的面積的最大值.
解答:解:由正弦定理,可得b=2RsinB=2sinB,
代入已知等式得 2sin2A-2sin2C=2sinAsinB-2sin2B,
即sin2A+sin2B-sin2C=sinAsinB,
∴a2+b2-c2=ab,
由此可得cosC=
a2+b2-c2
2ab
=
1
2

結合C∈(0°,180°),得C=60°.
∵ab=a2+b2-c2=a2+b2-(2RsinC)2=a2+b2-3≥2ab-3,
∴ab≤3 (當且僅當a=b時,取等號),
∵△ABC面積為S=
1
2
absinC≤
1
2
×3×
3
2
=
3
3
4
,
∴當且僅當a=b=
3
時,△ABC的面積的最大值為
3
3
4

故選:C
點評:本題給出三角形的邊角關系,求三角形面積的最大值,著重考查了正余弦定理、三角形的面積公式和基本不等式求最值等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c,AH為BC邊上的高,以下結論:①
AH
•(
AC
-
AB
)=0

AB
BC
<0⇒△ABC
為鈍角三角形;
AC
AH
|
AH
|
=csinB

BC
•(
AC
-
AB
)=a2
,其中正確的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,角A、B、C的對邊分別是a、b、c,且滿足b+c=
3
a
,設
m
=[cos(
π
2
+A),-1],
n
=(cosA-
5
4
,-sinA),
m
n
,試求角B的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c.
(1)證明:
a+b
2a+b
c
a+c
;
(2)證明:不論x取何值總有b2x2+(b2+c2-a2)x+c2>0;
(3)若a>c≥2,證明:
1
a+c+1
-
1
(c+1)(a+1)
1
6

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,角A、B、C所對的邊長分別為a,b,c且角A,B、C成等差數列,△ABC的面積S=
b2-(a-c)2k
,則實數k的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c,a=
2
,向量
m
=(-1,1)
,
n
=(cosBcosC,sinBsinC-
2
2
)
,且
m
n

(Ⅰ)求A的大;
(Ⅱ)當sinB+cos(
12
-C)
取得最大值時,求角B的大小和△ABC的面積.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲国产一级 | 亚洲一区二区视频免费观看 | 欧美三日本三级三级在线播放 | 丁香久久| 国产精品自产av一区二区三区 | 亚洲成人毛片 | 日本一区二区高清不卡 | 日日操视频 | 久久久久久久久蜜桃 | 欧美极品一区二区 | 99久久精品毛片免费 | 欧美一级黄色片网站 | 精品国产一区二区三区久久久蜜月 | 国产美女在线播放 | 欧美一区二区在线视频 | 欧美成人一区二区三区片免费 | 国产 在线 | 日韩 | 涩涩久久 | 亚洲精品午夜国产va久久成人 | 99色资源| 国产伦精品一区二区三区视频网站 | 日韩午夜| 婷婷视频在线 | 91视频播放 | 午夜视频福利 | 在线第一页 | 日韩专区一区二区三区 | 久久久久国产精品午夜一区 | 国产欧美精品一区二区色综合 | 日韩免费在线播放 | 91欧美在线 | 啪啪小视频网站 | 日韩av福利 | 久久99久久精品 | 国产99久久精品 | 欧洲视频一区二区 | 四虎永久在线 | 91爱爱网| 国产精品久久久久影院色老大 | 欧美精品一区二区在线播放 | 欧美一区二区三区四区五区 |