日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)的定義域為[0,1],且滿足下列條件:①對于任意x∈[0,1],總有f(x)≥3且f(1)=4.②若x1≥0,x2≥0,x1+x2≤1.則有f(x1+x2)≥f(x1)+f(x3)-3.

(1)求f(0)的值;

(2)求證:f(x)≤4;

(3)當x∈(,)(n=1,2,3…)時,試證明f(x)<3x+3.

答案:(1)解:∵當x∈[0,1]時,f(x)≥3,

∴f(0)≥3,又在f(x1+x2)≥f(x1)+f(x2)-3中

令x1=x2=0,得f(0)≤3,∴f(0)=3.                                                  

(2)證明:設0≤x1<x2≤1.∴0<x2-x1≤1,

∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)≥f(x2-x1)+f(x1)-3-f(x1)=f(x2-x1)-3≥0,

若f(x2-x1)-3=0,即f(x2-x1)=3,則f(x)在[0,1]上恒為3,這與f(1)=4矛盾.

∴f(x2-x1)>3,即f(x)在[0,1]上為單調遞增函數,∴f(x)≤f(1)=4.                      

(3)證明:由f(x1+x2)≥f(x1)+f(x2)-3,令x1=x2=x,得f(x)≤.

取x=,得f()≤+3,x=時,f()≤.

由數學歸納法得f()≤+3.∴取x∈()時,則有f(x)<2x+2,

而x∈()(),∴f(x)<2x+2.

而在()上2x+2<3x+3,∴當x∈()時,f(x)<3x+3成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數a的取值范圍;
(II)設函數f(x)的兩個極值點分別為x1,x2判斷下列三個代數式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

問題1:已知函數f(x)=
x
1+x
,則f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我們若把每一個函數值計算出,再求和,對函數值個數較少時是常用方法,但函數值個數較多時,運算就較繁鎖.觀察和式,我們發現f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
、f(
1
10
)+f(10)
可一般表示為f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
為定值,有此規律從而很方便求和,請求出上述結果,并用此方法求解下面問題:
問題2:已知函數f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log3
3
x
1-x
,M(x1y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P是M,N的中點.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
(n∈N*,n≥2),求
lim
n→∞
4Sn-9Sn
4Sn+1+9Sn+1
的值;
(3)在(2)的條件下,若an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x+1-a
a-x
(x≠a)

(1)當f(x)的定義域為[a+
1
2
,a+1]
時,求f(x)的值域;
(2)試問對定義域內的任意x,f(2a-x)+f(x)的值是否為一個定值?若是,求出這個定值;若不是,說明理由;
(3)設函數g(x)=x2+|(x-a)f(x)|,若
1
2
≤a≤
3
2
,求g(x)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•嘉定區一模)(理)已知函數f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點.
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關于n的解析式;
(3)對(2)中的Tn,設數列{an}滿足a1=2,當n≥2時,an=4Tn+2,問是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩精品第一区 | 女国产精品视频一区二区三区 | 国产中文在线 | 亚洲国产成人在线视频 | a在线免费 | 中国国产一级毛片 | 少妇一区二区三区免费观看 | 超碰导航 | 国产区日韩区欧美区 | 亚洲午夜电影在线 | 欧美日韩在线免费观看 | 91视频在线 | 五月婷婷中文 | 成人亚洲 | 欧美精品一区二区三区在线播放 | 国产精品毛片一区二区在线看 | 精品国产影院 | 古典武侠第一页久久777 | 人人看超碰| 国产一区二区精品在线观看 | 欧美午夜精品一区二区三区电影 | 久久综合九色综合欧美狠狠 | 亚洲国产欧美一区二区三区久久 | 国产一区二区三区在线看 | 欧美日韩第一页 | 99精品国产高清一区二区麻豆 | 欧美久久一级特黄毛片 | 欧美极品欧美精品欧美视频 | 国产精品999 | 在线播放91 | 久久国产精品久久久久久 | 国产精品久久久久久久久久久久久久久久久 | 老牛影视av一区二区在线观看 | 最新色 | 精品成人佐山爱一区二区 | 欧美精品色网 | 精品久久久久国产免费 | 人妖 丝袜 另类 亚洲 | 中文字幕av第一页 | 亚洲a级在线观看 | 成人伊人|