日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=數學公式x3+數學公式x2+(a2-3a)x-2a
(1)如果對任意x∈(1,2],f'(x)>a2恒成立,求實數a的取值范圍;
(2)設實數f(x)的兩個極值點分別為x1x2判斷①x1+x2+a②x12+x22+a2③x13+x23+a3是否為定值?若是定值請求出;若不是定值,請把不是定值的表示為函數g(a)并求出g(a)的最小值;
(3)對于(2)中的g(a),設H(x)=數學公式[g(x)-27],m,n∈(0,1)且m≠n,試比較|H(m)-H(n)|與|em-en|(e為自然對數的底)的大小,并證明.

解:(1)∵函數f(x)=x3+x2+(a2-3a)x-2a
∴函數f′(x)=x2+(a-3)x+(a2-3a)
則f′(x)-a2=x2+(a-3)x-3a=(x+a)(x-3)
若對任意x∈(1,2],f'(x)>a2恒成立,
則對任意x∈(1,2],f′(x)-a2>0恒成立
則a<-2.
(2)令f′(x)=0
則x=3或x=-a
則①x1+x2+a=3為定值;
②x12+x22+a2=2a2+9不為定值;
此時g(a)=2a2+9,當a=0時有最小值9;
③x13+x23+a3=27為定值;
(3)∵g(a)=2a2+9,
∴H(x)=[g(x)-27]=(2x2-18),
令F(x)=H(x)-ex=(2x2-18)-ex
則F′(x)=x-ex
當x∈(0,1)時,F′(x)<0恒成立
即F(x)在區間(0,1)上為減函數
當m,n∈(0,1)且m≠n時,不妨令m>n
則F(m)-F(n)=[H(m)-em]-[H(n)-en]<0
即[H(m)-em]<[H(n)-en]
即H(m)-H(m)<em-en
即|H(m)-H(n)|<|em-en|
分析:(1)由已知中函數f(x)=x3+x2+(a2-3a)x-2a,可求出f'(x)的解析式,根據二次函數的圖象和性質可得對任意x∈(1,2],f'(x)>a2恒成立時,實數a的取值范圍;
(2)由(1)中f'(x)的解析式,可求出x1x2,進而判斷出①x1+x2+a②x12+x22+a2③x13+x23+a3是否為定值及函數g(a)的解析式,及g(a)的最小值;
(3)根據(2)中g(a)的解析式,我們可以求出H(x)=[g(x)-27]的解析式,構造函數F(x)=H(x)-ex,利用導數法,可判斷出F(x)在區間(0,1)上的單調性,進而判斷出當m,n∈(0,1)且m≠n時,|H(m)-H(n)|與|em-en|的大小.
點評:本題考查的知識點是利用導數求閉區間上函數的最值,函數恒成立問題,導數的運算,其中(1)的關鍵是熟練掌握二次函數的圖象和性質,(2)的關鍵是求出f(x)的兩個極值點分別為x1x2,(3)的關鍵是構造函數F(x)=H(x)-ex,并利用導數法判斷出F(x)在區間(0,1)上的單調性.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: julia一区二区中文久久94 | 久久国产精品免费一区二区三区 | 日韩www.| 日韩欧美在线观看视频网站 | 免费一级片 | 日韩精品网站 | 国产精品一区二区三区免费 | 精品一区二区三区四区视频 | 亚洲视频免费观看 | 久久99精品久久久水蜜桃 | 国产精品久久久久久久久久免费 | av国产精品毛片一区二区小说 | 91九色视频 | 日本一区二区三区中文字幕 | 日韩三级黄 | 人人草在线视频 | 久久天堂 | 韩国精品视频在线观看 | 国产精品久久一区 | 91久久久久久 | 久久精品色视频 | 91免费版在线观看 | 国产精选一区二区 | 99热播在线 | 久久人人爽爽人人爽人人片av | 天堂视频在线 | 日韩欧美国产一区二区 | 麻豆三级| 叶山小百合av一区二区 | 特级黄一级播放 | 国产精品18久久久久久首页狼 | av网战 | 毛片久久久 | 蜜臀av在线播放一区二区三区 | 国产视频久久久 | 欧美激情自拍偷拍 | 91精品国产自产精品男人的天堂 | 国产精品久久久久久久久久久久久久 | 亚洲国内精品 | 欧美精品在线一区二区三区 | 青青草小视频 |