【題目】給出下面四個推理:
①由“若是實數,則
”推廣到復數中,則有“若
是復數,則
”;
②由“在半徑為R的圓內接矩形中,正方形的面積最大”類比推出“在半徑為R的球內接長方體中,正方體的體積最大”;
③以半徑R為自變量,由“圓面積函數的導函數是圓的周長函數”類比推出“球體積函數的導函數是球的表面積函數”;
④由“直角坐標系中兩點、
的中點坐標為
”類比推出“極坐標系中兩點
、
的中點坐標為
”.
其中,推理得到的結論是正確的個數有( )個
A. 1 B. 2 C. 3 D. 4
科目:高中數學 來源: 題型:
【題目】已知M( ,0),N(2,0),曲線C上的任意一點P滿足:
=
|
|.
(Ⅰ)求曲線C的方程;
(Ⅱ)設曲線C與x軸的交點分別為A、B,過N的任意直線(直線與x軸不重合)與曲線C交于R、Q兩點,直線AR與BQ交于點S.問:點S是否在同一直線上?若是,請求出這條直線的方程;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩名籃球運動員分別在各自不同的5場比賽所得籃板球數的莖葉圖如圖所示,已知兩名運動員在各自5場比賽所得平均籃板球數均為10.
(1)求x,y的值;
(2)求甲乙所得籃板球數的方差和
,并指出哪位運動員籃板球水平更穩定;
(3)教練員要對甲乙兩名運動員籃板球的整體水平進行評估.現在甲乙各自的5場比賽中各選一場進行評估,則兩名運動員所得籃板球之和小于18的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點.
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出n的值為( ) (參考數據: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12
B.24
C.36
D.48
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},{bn}滿足 ,
,其中n∈N+ . (I)求證:數列{bn}是等差數列,并求出數列{an}的通項公式;
(II)設 ,求數列{cncn+2}的前n項和為Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P為函數f(x)=lnx的圖象上任意一點,點Q為圓[x﹣(e+ )]2+y2=1任意一點,則線段PQ的長度的最小值為( )
A.
B.
C.
D.e+ ﹣1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求證:BD⊥平面ADE;
(2)求直線BE和平面CDE所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=lnx+ +ax(a∈R),g(x)=ex+
.
(1)討論f(x)的極值點的個數;
(2)若對于x>0,總有f(x)≤g(x).(i)求實數a的取值范圍;(ii)求證:對于x>0,不等式ex+x2﹣(e+1)x+ >2成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com