【題目】已知各項不為零的數列{an}的前n項和為Sn , 且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1 , a2 , a3成等比數列,求實數p的值;
(2)若a1 , a2 , a3成等差數列,
①求數列{an}的通項公式;
②在an與an+1間插入n個正數,共同組成公比為qn的等比數列,若不等式(qn)(n+1)(n+a)≤e對任意的n∈N*恒成立,求實數a的最大值.
【答案】
(1)
解:當n=1時,a1=pa1a2, ,當n=2時,a1+a2=pa2a3,
,
由 得
,即p2+p﹣1=0,解得:
(2)
解:①由2a2=a1+a3得 ,故a2=2,a3=3,所以
,
當n≥2時, ,
因為an≠0,所以an+1﹣an﹣1=2
故數列{an}的所有奇數項組成以1為首項2為公差的等差數列,
其通項公式
同理,數列{an}的所有偶數項組成以2為首項2為公差的等差數列,
其通項公式是
所以數列{an}的通項公式是an=n
②an=n,在n與n+1間插入n個正數,組成公比為qn的等比數列,故有 ,
即
所以 ,即
,兩邊取對數得
,
分離參數得 恒成立
令 ,x∈(1,2],則
,x∈(1,2],…(12分)
令 ,x∈(1,2],則
,
下證 ,x∈(1,2],
令 ,則
,所以g(x)>0,
即 ,用
替代x可得
,x∈(1,2],
所以 ,所以f(x)在(1,2]上遞減,
所以
【解析】(1)利用遞推關系、等比數列的性質即可得出p.(2)①利用遞推關系、等差數列的性質即可得出an . ②an=n,在n與n+1間插入n個正數,組成公比為qn的等比數列,故有 ,即
,即
,兩邊取對數得
,分離參數得
恒成立.令
,x∈(1,2],則
,x∈(1,2],令
,x∈(1,2],利用導數研究其單調性極值與最值即可得出.
【考點精析】通過靈活運用數列的通項公式,掌握如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式即可以解答此題.
科目:高中數學 來源: 題型:
【題目】設是公差不為零的等差數列,滿足
數列
的通項公式為
(1)求數列的通項公式;
(2)將數列,
中的公共項按從小到大的順序構成數列
,請直接寫出數列
的通項公式;
(3)記,是否存在正整數
,使得
成等差數列?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一座橋的截面圖,橋的路面由三段曲線構成,曲線AB和曲線DE分別是頂點在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們在接點B、D處的切線相同,若橋的最高點C到水平面的距離H=6米,圓弧的弓高h=1米,圓弧所對的弦長BD=10米.
(1)求弧 所在圓的半徑;
(2)求橋底AE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是____________.
【答案】
【解析】∵圓C的方程可化為(x-4)2+y2=1,∴圓C的圓心為(4,0),半徑為1.由題意知,直線y=kx-2上至少存在一點A(x0,kx0-2),以該點為圓心,1為半徑的圓與圓C有公共點,∴存在x0∈R,使得AC≤1+1成立,即ACmin≤2.
∵ACmin即為點C到直線y=kx-2的距離,
∴≤2,解得0≤k≤
.∴k的最大值是
.
【題型】填空題
【結束】
15
【題目】在平面直角坐標系中,直線
.
(1)若直線與直線
平行,求實數
的值;
(2)若,
,點
在直線
上,已知
的中點在
軸上,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M:與
軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長;
(3)若點是直線
上的動點,過點
作直線
與圓M相切,
為切點,求四邊形
面積的最小值.
【答案】(1) (2)
(3)
【解析】試題分析:(1)先將圓的一般方程化成標準方程,利用直線和圓相切進行求解;(2) 令,得到關于
的一元二次方程進行求解;(3)將四邊形的面積的最小值問題轉化為點到直線的的距離進行求解.
試題解析:(1) ∵圓M:
與
軸相切
∴ ∴
(2) 令,則
∴
∴
(3)
∵的最小值等于點
到直線
的距離,
∴ ∴
∴四邊形面積的最小值為
.
【題型】解答題
【結束】
20
【題目】在平面直角坐標系中,圓
的方程為
,且圓
與
軸交于
,
兩點,設直線
的方程為
.
(1)當直線與圓
相切時,求直線
的方程;
(2)已知直線與圓
相交于
,
兩點.
(ⅰ)若,求實數
的取值范圍;
(ⅱ)直線與直線
相交于點
,直線
,直線
,直線
的斜率分別為
,
,
,
是否存在常數,使得
恒成立?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量m (sin
,1),
=(1,
cos
),函數f(x)=
(1)求函數f(x)的最小正周期;
(2)若f(α﹣ )=
,求f(2α+
)的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com