【題目】已知函數在區間
上的最大值為2.
(1)求函數的解析式,并求它的對稱中心的坐標;
(2)先將函數保持橫坐標不變,縱坐標變為原來的
(
)倍,再將圖象向左平移
(
)個單位,得到的函數
為偶函數.若對任意的
,總存在
,使得
成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知點為圓
的圓心,
是圓上的動點,點
在圓的半徑
上,且有點
和
上的點
,滿足
,
.
(1)當點在圓上運動時,求點
的軌跡方程;
(2)若斜率為的直線
與圓
相切,直線
與(1)中所求點
的軌跡交于不同的兩點
,
,
是坐標原點,且
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左頂點,右焦點分別為
,右準線為
,
(1)若直線上不存在點
,使
為等腰三角形,求橢圓離心率的取值范圍;
(2)在(1)的條件下,當取最大值時,
點坐標為
,設
是橢圓上的三點,且
,求:以線段
的中心為原點,過
兩點的圓方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點
到拋物線
焦點的距離為
.
(1)求的值;
(2) 設是拋物線上異于
的兩個不同點,過
作
軸的垂線,與直線
交于點
,過
作
軸的垂線,與直線
交于點
,過
作
軸的垂線,與直線
分別交于點
.
求證:①直線的斜率為定值;
②是線段
的中點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解本屆高二學生對文理科的選擇與性別是否有關,現隨機從高二的全體學生中抽取了若干名學生,據統計,男生35人,理科生40人,理科男生30人,文科女生15人。
(1)完成如下2×2列聯表,判斷是否有99.9%的把握認為本屆高二學生“對文理科的選擇與性別有關”?
男生 | 女生 | 合計 | |
文科 | |||
理科 | |||
合計 |
(2)已采用分層抽樣的方式從樣本的所有女生中抽取了5人,現從這5人中隨機抽取2人參加座談會,求抽到的2人恰好一文一理的概率。
0.15 | 0.10 | 0.05 | 0.01 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式,其中
為樣本容量)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,長方體ABCD﹣A′B′C′D′中,AB=2 ,AD=2
,AA′=2,
(Ⅰ)求異面直線BC′ 和AD所成的角;
(Ⅱ)求證:直線BC′∥平面ADD′A′.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數),在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的方程為
.
(1)求圓的直角坐標方程;
(2)設圓與直線
交于點
,若點
的坐標為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2018·日照一模)如圖所示,ABCD-A1B1C1D1是長方體,O是B1D1的中點,直線A1C交平面AB1D1于點M,給出下列結論:
①A、M、O三點共線;②A、M、O、A1不共面;③A、M、C、O共面;④B、B1、O、M共面.
其中正確結論的序號為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com