【題目】已知函數(shù),
.
(1)若函數(shù)在區(qū)間
上單調(diào)遞減,試探究函數(shù)
在區(qū)間
上的單調(diào)性;
(2)證明:方程在
上有且僅有兩解.
【答案】(1)單調(diào)遞減.(2)見解析
【解析】
(1)對(duì)求導(dǎo),
,再對(duì)
求導(dǎo),可得
遞減區(qū)間,可得
的取值范圍,可得函數(shù)
在區(qū)間
上的單調(diào)性;
(2)令,因?yàn)?/span>
,可令
,對(duì)其求導(dǎo),可得
的單調(diào)性和零點(diǎn),記正零點(diǎn)為
,可得
的性質(zhì)及
的表達(dá)式,將
滿足的條件代入
,綜合分析可得證明.
解:(1)依題意,,由
,
故函數(shù)的遞減區(qū)間為
;而當(dāng)
時(shí),
故若函數(shù)在區(qū)間
上單調(diào)遞減,
函數(shù)在區(qū)間
上也是單調(diào)遞減.
(2)令,
因?yàn)?/span>,由
得
,
令,則
,
因?yàn)?/span>,且
,所以
必有兩個(gè)異號(hào)的零點(diǎn),記正零點(diǎn)為
,
則時(shí),
,
單調(diào)遞減;
時(shí),
,
單調(diào)遞增,若
在
上恰有兩個(gè)零點(diǎn),則
,
由得
,
所以,又因?yàn)?/span>
的對(duì)稱軸為
,
所以,
所以,所以
,
又,
設(shè)中的較大數(shù)為
,則
,
故當(dāng)時(shí),方程
在
上有且僅有兩解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
(
),將曲線
向左平移2個(gè)單位長(zhǎng)度得到曲線
.
(1)求曲線的普通方程和極坐標(biāo)方程;
(2)設(shè)直線與曲線
交于
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,新能源汽車技術(shù)不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車市場(chǎng)上影響力不斷增大.動(dòng)力蓄電池技術(shù)作為新能源汽車的核心技術(shù),它的不斷成熟也是推動(dòng)新能源汽車發(fā)展的主要?jiǎng)恿?/span>.假定現(xiàn)在市售的某款新能源汽車上,車載動(dòng)力蓄電池充放電循環(huán)次數(shù)達(dá)到2000次的概率為85%,充放電循環(huán)次數(shù)達(dá)到2500次的概率為35%.若某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電,那么他的車能夠充電2500次的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(k為常數(shù),
且
).
(1)在下列條件中選擇一個(gè)________使數(shù)列是等比數(shù)列,說明理由;
①數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列;
②數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列;
③數(shù)列是首項(xiàng)為2,公差為2的等差數(shù)列的前n項(xiàng)和構(gòu)成的數(shù)列.
(2)在(1)的條件下,當(dāng)時(shí),設(shè)
,求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為:
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為:
.
(Ⅰ)求直線與曲線
公共點(diǎn)的極坐標(biāo);
(Ⅱ)設(shè)過點(diǎn)的直線
交曲線
于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,離心率為
的橢圓
的左頂點(diǎn)為
,過原點(diǎn)
的直線(與坐標(biāo)軸不重合)與橢圓
交于
兩點(diǎn),直線
分別與
軸交于
,
兩點(diǎn).若直線
斜率為
時(shí),
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)試問以為直徑的圓是否經(jīng)過定點(diǎn)(與直線
的斜率無關(guān))?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
.
(1)若.
①求實(shí)數(shù)的值;
②若,證明
為
極值點(diǎn);
(2)求實(shí)數(shù)的取值范圍,使得對(duì)任意的
恒有
成立.(注:
為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大約在20世紀(jì)30年代,世界上許多國(guó)家都流傳著這樣一個(gè)題目:任取一個(gè)正整數(shù),如果它是偶數(shù),則除以2;如果它是奇數(shù),則將它乘以3加1,這樣反復(fù)運(yùn)算,最后結(jié)果必然是1.這個(gè)題目在東方被稱為“角谷猜想”,世界一流的大數(shù)學(xué)家都被其卷入其中,用盡了各種方法,甚至動(dòng)用了最先進(jìn)的電子計(jì)算機(jī),驗(yàn)算到對(duì)700億以內(nèi)的自然數(shù)上述結(jié)論均為正確的,但卻給不出一般性的證明.例如取
,則要想算出結(jié)果1,共需要經(jīng)過的運(yùn)算步數(shù)是( )
A.9B.10C.11D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,
,
,
是
的中點(diǎn),以
為折痕將
向上折起,
變?yōu)?/span>
,且平面
平面
.
(1)求三棱錐的體積;
(2)求證:;
(3)求證:平面平面
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com