【題目】下列說法正確的是( )
A. “為真”是“
為真”的充分不必要條件;
B. 樣本的標準差是3.3;
C. K2是用來判斷兩個分類變量是否相關的隨機變量,當K2的值很小時可以推定兩類變量不相關;
D. 設有一個回歸直線方程為,則變量
每增加一個單位,
平均減少1.5個單位.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知極點與直角坐標系的原點重合,極軸與軸的正半軸重合,圓
的極坐標方程是
,直線
的參數方程是
(
為參數).
(1)若,
為直線
與
軸的交點,
是圓
上一動點,求
的最大值;
(2)若直線被圓
截得的弦長為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若曲線在
處的切線的方程為
,求實數
的值;
(2)設,若對任意兩個不等的正數
,都有
恒成立,求實數
的取值范圍;
(3)若在上存在一點
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市一汽車出租公司為了調查A,B兩種車型的出租情況,現隨機抽取了這兩種車型各100輛,分別統計了每輛車某個星期內的出租天數,統計數據如下表:
A車型 B車型
出租天數 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 出租天數 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
車輛數 | 5 | 10 | 30 | 35 | 15 | 3 | 2 | 車輛數 | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
(Ⅰ)從出租天數為3天的汽車(僅限A,B兩種車型)中隨機抽取一輛,估計這輛汽車恰好是A型車的概率;
(Ⅱ)根據這個星期的統計數據,估計該公司一輛A型車,一輛B型車一周內合計出租天數恰好為4天的概率;
(Ⅲ)
(。┰噷懗A,B兩種車型的出租天數的分布列及數學期望;
(ⅱ)如果兩種車輛每輛車每天出租獲得的利潤相同,該公司需要從A,B兩種車型中購買一輛(注:兩種車型的采購價格相當),請你根據所學的統計知識,建議應該購買哪一種車型,并說明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖甲,直角梯形中,
,
,點
分別在
上,且
,
,
,現將梯形
沿
折起,使平面
與平面
垂直(如圖乙).
(Ⅰ)求證: 平面
;
(II)當的長為何值時,二面角
的大小為
?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了鼓勵市民節約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用(單位:元)關于月用電量
(單位:度)的函數解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求的值;
(3)在滿足(2)的條件下,估計1月份該市居民用戶平均用電費用(同一組中的數據用該組區間的中點值作代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環節中,評委將他們的筆試成績作為樣本數據,繪制成如圖所示的莖葉圖.為了增加結果的神秘感,主持人暫時沒有公布甲、乙兩班最后一位選手的成績.
(Ⅰ)求乙班總分超過甲班的概率;
(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個班的選手的情況.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程是
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標系,直線
的參數方程為
(
為參數).
(I)寫出直線的一般方程與曲線
的直角坐標方程,并判斷它們的位置關系;
(II)將曲線向左平移
個單位長度,向上平移
個單位長度,得到曲線
,設曲線
經過伸縮變換
得到曲線
,設曲線
上任一點為
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com