日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y)
,滿足
m
n
=0

(Ⅰ)將y表示為x的函數f(x),并求f(x)的最小正周期:
(Ⅱ)已知a,b,c分別為△ABC的三個內角A,B,C的對應邊長,若f(
A
2
)=3
,且a=2,求b+c的取值范圍.
(Ⅰ)∵
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y)
,滿足
m
n
=0

∴2cos2x+2
3
sinxcosx-y=0
∴y=2cos2x+2
3
sinxcosx=cos2x+
3
sin2x+1
∴f(x)=2sin(2x+
π
6
)+1,f(x)的最小正周期T=
2
=π;
(Ⅱ)∵f(
A
2
)=3
,∴sin(A+
π
6
)=1
∵A∈(0,π),∴A=
π
3

∵a=2,∴由正弦定理可得b=
4
3
3
sinB
,c=
4
3
3
sinC

∴b+c=
4
3
3
sinB
+
4
3
3
sinC
=
4
3
3
sinB
+
4
3
3
sin(
3
-B)
=4sin(B+
π
6

∵B∈(0,
3
)
,∴B+
π
6
(
π
6
6
)
,∴sin(B+
π
6
)∈(
1
2
,1],
∴b+c∈(2,4]
∴b+c的取值范圍為(2,4].
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知
m
=(2cosx+2
3
sinx,1)
n
=(cosx,-y)
,滿足
m
n
=0

(1)將y表示為x的函數f(x),并求f(x)的最小正周期和單調遞增區間;
(2)已知a,b,c分別為△ABC的三個內角A,B,C對應的邊長,若f(
A
2
)=3
,且a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
m
=(cosx+
3
sinx,1),
n
=(2cosx,-y)
,滿足
m
n
=0

(1)將y表示為x的函數f(x),并求f(x)的單調遞增區間;
(2)已知△ABC三個內角A、B、C的對邊分別為a、b、c,若f(
A
2
)=3
,且a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
m
=(2cosx,
3
),
n
=(sinx,cos2x)
,記函數f(x)=
m
n

(1)求f(x)的最小正周期和單調增區間;
(2)當x∈[0,
π
4
]
時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長寧區一模)已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y)
,滿足
m
n
=0

(Ⅰ)將y表示為x的函數f(x),并求f(x)的最小正周期:
(Ⅱ)已知a,b,c分別為△ABC的三個內角A,B,C的對應邊長,若f(
A
2
)=3
,且a=2,求b+c的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品一区二区三区久久 | 精品少妇一区二区三区日产乱码 | 久久综合久久久 | 国产在线小视频 | 成人免费观看49www在线观看 | 亚洲日日操| 婷婷综合网 | 日本jizz在线观看 | 欧美色性| 一区影院 | 韩国电影久久 | 欧美成人一区二区三区 | 欧美精品一区二区三区涩爱蜜 | 欧美日韩国产在线看 | 男人天堂网址 | 天天狠狠操 | 一区二区精品视频 | 国产一区二区视频在线观看 | 欧美一区二区视频在线观看 | 亚洲视频1区| 久久黄色网 | 精品探花| 欧美精品在线观看一区二区 | 精品成人一区二区 | 久久久久久91香蕉国产 | 精品久久久久久久人人人人传媒 | 伊人艹 | 99热在线精品免费 | 91久久久久久久久久久久久 | 超碰香蕉| 91一区二区 | 亚洲成人一区二区 | 四虎影视在线 | 中文字幕观看 | 日本免费精品 | 成人久久18免费观看 | 国产美女精品视频免费观看 | 五月天中文字幕 | 日本不卡免费新一二三区 | 久久精品视频亚洲 | www.com欧美|