已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同時滿足條件:
①∀x∈R,f(x)<0或g(x)<0;
②∃x∈(-∞,-4),f(x)g(x)<0,
則m的取值范圍是________.
解析 當x<1時,g(x)<0,當x>1時,g(x)>0,當x=1時,g(x)=0,m=0不符合要求;當m>0時,根據函數f(x)和函數g(x)的單調性,一定存在區間[a,+∞)使f(x)≥0且g(x)≥0,故m>0時不符合第①條的要求;當m<0時,如圖所示,如果符合①的要求,則函數f(x)的兩個零點都得小于1,如果符合第②條要求,則函數f(x)至少有一個零點小于-4,問題等價于函數f(x)有兩個不相等的零點,其中較大的零點小于1,較小的零點小于-4,函數f(x)的兩個零點是2m,-(m+3),故m滿足或
解第一個不等式組得-4<m<-2,第二個不等式組無解,故所求m的取值范圍是(-4,-2).
答案 (-4,-2)
科目:高中數學 來源:江蘇省阜寧縣中學2011-2012學年高二下學期期中調研考試數學試題 題型:022
已知f(x)=x2+bx+c為偶函數,曲線y=f(x)過點(2,5),g(x)=(x+m)f(x).若曲線y=g(x)有斜率為0的切線,則實數m的取值范圍為________.
查看答案和解析>>
科目:高中數學 來源:2012年普通高等學校招生全國統一考試北京卷數學理科 題型:022
已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同時滿足條件:
①x∈R,f(x)<0或g(x)<0;
②x∈(-∞,-4),f(x)g(x)<0,則m的取值范圍是________.
查看答案和解析>>
科目:高中數學 來源:湖南省郴州市一中2012屆高三第六次質量檢測數學文科試題 題型:044
已知f(x)=mx(m為常數,m>0且m≠1).
設f(a1),f(a2),…,f(an)…(n∈N?)是首項為m2,公比為m的等比數列.
(1)求證:數列{an}是等差數列;
(2)若bn=an·f(an),且數列{bn}的前n項和為Sn,當m=2時,求Sn;
(3)若cn=f(an)lgf(an),問是否存在m,使得數列{cn}中每一項恒小于它后面的項?若存在,求出m的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年河北省高三8月月考理科數學試卷(解析版) 題型:解答題
已知函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數m的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。第一問,利用函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數求導數,判定單調性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com