【題目】我國古代數學家劉徽是公元三世紀世界上最杰出的數學家,他在《九章算術圓田術》注中,用割圓術證明了圓面積的精確公式,并給出了計算圓周率的科學方法.所謂“割圓術”,即通過圓內接正多邊形細割圓,并使正多邊形的周長無限接近圓的周長,進而來求得較為精確的圓周率(圓周率指圓周長與該圓直徑的比率).劉徽計算圓周率是從正六邊形開始的,易知圓的內接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑
,此時圓內接正六邊形的周長為
,此時若將圓內接正六邊形的周長等同于圓的周長,可得圓周率為3,當用正二十四邊形內接于圓時,按照上述算法,可得圓周率為__________.(參考數據:
)
科目:高中數學 來源: 題型:
【題目】(本小題滿分13分)
如圖5,已知點是圓心為
半徑為1的半圓弧上從點
數起的第一個三等分點,
是直徑,
,
平面
,點
是
的中點.
(1)求二面角的余弦值.
(2)求點到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓G:,過點A(0,5),B(﹣8,﹣3),C、D在該橢圓上,直線CD過原點O,且在線段AB的右下側.
(1)求橢圓G的方程;
(2)求四邊形ABCD 的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知隨機變量的取值為不大于
的非負整數值,它的分布列為:
0 | 1 | 2 | n | ||
其中(
)滿足:
,且
.
定義由生成的函數
,令
.
(I)若由生成的函數
,求
的值;
(II)求證:隨機變量的數學期望
,
的方差
;
()
(Ⅲ)現投擲一枚骰子兩次,隨機變量表示兩次擲出的點數之和,此時由
生成的函數記為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數的圖象形如漢字“囧”,故稱其為“囧函數”.
下列命題:
①“囧函數”的值域為;
②“囧函數”在上單調遞增;
③“囧函數”的圖象關于軸對稱;
④“囧函數”有兩個零點;
⑤“囧函數”的圖象與直線至少有一個交點.其中正確命題的個數為( )
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數為1或2的人去參加甲游戲,擲出點數大于2的人去參加乙游戲.
(1) 求出4個人中恰有2個人去 參加甲游戲的概率;
(2)求這4個人中去參加甲游戲人數大于去參加乙游戲的人數的概率;
(3)用分別表示這4個人中去參加甲、乙游戲的人數,記
,求隨機變量
的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“活水圍網”養魚技術具有養殖密度高、經濟效益好的特點.研究表明:“活水圍網”養魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養殖密度
(單位:尾/立方米)的函數.當
不超過4(尾/立方米)時,
的值為
(千克/年);當
時,
是
的一次函數;當
達到
(尾/立方米)時,因缺氧等原因,
的值為
(千克/年).
(1)當時,求函數
的表達式;
(2)當養殖密度為多大時,魚的年生長量(單位:千克/立方米)
可以達到最大,并求出最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com