如圖,已知⊙O的半徑為1,MN是⊙O的直徑,過M點(diǎn)作⊙O的切線AM,C是AM的中點(diǎn),AN交⊙O于B點(diǎn),若四邊形BCON是平行四邊形;
(Ⅰ)求AM的長;
(Ⅱ)求sin∠ANC.
(Ⅰ);(Ⅱ)
.
解析試題分析:(Ⅰ)先證得,
,即可得
;(Ⅱ)作
,得
,再在
中求解sin∠ANC.
試題解析:(Ⅰ)連接,則
,
因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/5c/8/1ub9z2.png" style="vertical-align:middle;" />是平行四邊形,所以∥
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a8/a/mwsjo.png" style="vertical-align:middle;" />是的切線,所以
,可得
,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ec/d/1hlox2.png" style="vertical-align:middle;" />是的中點(diǎn),所以
,得
,故
. (5分)
(Ⅱ)作于
點(diǎn),則
,由(Ⅰ)可知
,
故. (10分)
考點(diǎn):平面幾何關(guān)系證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是⊙
的直徑,
是⊙
的切線,
與
的延長線交于點(diǎn)
,
為切點(diǎn).若
,
,
的平分線
與
和⊙
分別交于點(diǎn)
、
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
切線與圓切于點(diǎn)
,圓內(nèi)有一點(diǎn)
滿足
,
的平分線
交圓于
,
,延長
交圓于
,延長
交圓于
,連接
.
(Ⅰ)證明://
;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,自⊙外一點(diǎn)
引切線與⊙
切于點(diǎn)
,
為
的中點(diǎn),過
引割線交⊙
于
兩點(diǎn). 求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知⊙O是的外接圓,
是
邊上的高,
是⊙O的直徑.
(1)求證:;
(II)過點(diǎn)作⊙O的切線交
的延長線于點(diǎn)
,若
,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,過圓O外一點(diǎn)P作該圓的兩條割線PAB和PCD,分別交圓O于點(diǎn)A,B,C,D弦AD和BC交于Q點(diǎn),割線PEF經(jīng)過Q點(diǎn)交圓O于點(diǎn)E、F,點(diǎn)M在EF上,且:
(I)求證:PA·PB=PM·PQ.
(II)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,如圖,在平行四邊形ABCD中,延長DA到點(diǎn)E,延長BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.
(1)求證:△AEM ≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com