【題目】已知多面體ABCDEF中,四邊形ABFE為正方形,,
,G為AB的中點,
.
(1)求證:平面CDEF;
(2)求平面ACD與平面BCF所成銳二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】如果無窮數列{an}滿足條件:①;② 存在實數M,使得an≤M,其中n∈N*,那么我們稱數列{an}為Ω數列.
(1)設數列{bn}的通項為bn=20n-2n,且是Ω數列,求M的取值范圍;
(2)設{cn}是各項為正數的等比數列,Sn是其前n項和,c3=,S3=
,證明:數列{Sn}是Ω數列;
(3)設數列{dn}是各項均為正整數的Ω數列,求證:dn≤dn+1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某校學生參加社區服務的情況,采用按性別分層抽樣的方法進行調查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為n的樣本,得到一周參加社區服務時間的統計數據如下:
超過1小時 | 不超過1小時 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握認為該校學生一周參加社區服務時間是否超過1小時與性別有關?
(3)從該校學生中隨機調查60名學生,一周參加社區服務時間超過1小時的人數記為X,以樣本中學生參加社區服務時間超過1小時的頻率作為該事件發生的概率,求X的分布列和數學期望.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知在長方體中,
,
,
,點
為
上的一個動點,平面
與棱
交于點
,給出下列命題:
①四棱錐的體積為20;
②存在唯一的點,使截面四邊形
的周長取得最小值
;
③當點不與
,
重合時,在棱
上均存在點
,使得
平面
;
④存在唯一的點,使得
平面
,且
.
其中正確的命題是_____(填寫所有正確的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在長方體中,
,
為
的中點,
為
的中點,
為線段
上一點,且滿足
,
為
的中點.
(1)求證:平面
;
(2)求三棱錐的體積;
(3)求直線與直線
所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過曲線C1: (a>0,b>0)的左焦點F1作曲線C2:x2+y2=a2的切線,設切點為M,直線F1M交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若|MF1|=|MN|,則曲線C1的離心率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】空氣質量指數是反映空氣狀況的指數,
指數值趨小,表明空氣質量越好,下圖是某市10月1日-20日
指數變化趨勢,下列敘述錯誤的是( )
A.這20天中指數值的中位數略高于100
B.這20天中的中度污染及以上(指數
)的天數占
C.該市10月的前半個月的空氣質量越來越好
D.總體來說,該市10月上旬的空氣質量比中旬的空氣質量好
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC三內角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.
(1)求cosC的值;
(2)若a=3,c,求△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com