分析 (1)利用已知條件,化簡(jiǎn)f(xt)的表達(dá)式,利用二次函數(shù)的最值求解最大值;
(2)求出y=f(xt)與y=f(f(xt))的最小值,利用值域相同,列出不等式即可求b的取值范圍.
解答 解:(1)函數(shù)$f({x_t})={x_t}^2+b{x_t}$.b=2,且xt=log2t,$t∈[\frac{1}{2},2]$,
∴xt∈[-1,1],
∴$f({x_t})={x_t}^2+2{x_t}$,對(duì)稱軸為xt=-1,
可得xt∈[-1,1]的最大值為f(1)=3.(5分)
(2)$f({x_t})={x_t}^2+b{x_t}$,xt∈R
當(dāng)${x_t}=-\frac{b}{2}$時(shí),${f_{min}}({x_t})=-\frac{b^2}{4}$,∴y=f(xt)的值域?yàn)?[-\frac{b^2}{4},+∞)$,
∵$y=f({f({x_t})})={f^2}({x_t})+bf({x_t})$
令u=f(xt),則$u∈[-\frac{b^2}{4},+∞)$
函數(shù)y=f(f(xt))即為:y=u2+bu,$u∈[-\frac{b^2}{4},+∞)$
若y=f(xt)與y=f(f(xt))有相同的值域,則等價(jià)于它們有相同的最小值
即滿足:$-\frac{b^2}{4}≤-\frac{b}{2}$
所以:b∈(-∞,0]∪[2,+∞)(10分)
點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì)的應(yīng)用,函數(shù)的最值的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | N⊆M | B. | N∩M=∅ | C. | M⊆N | D. | M∪N=R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{27}$ | B. | $\frac{5}{27}$ | C. | $\frac{1}{3}$ | D. | $\frac{16}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-∞,-\frac{1}{2})∪(0,+∞)$ | B. | $(0,\frac{1}{2})$ | C. | $(-\frac{1}{2},0)$ | D. | $(-∞,0)∪(\frac{1}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{3}$,$\frac{2}{3}$) | B. | [$\frac{1}{3}$,-$\frac{2}{3}$) | C. | ($\frac{1}{2}$,$\frac{2}{3}$) | D. | [$\frac{1}{2}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{π}{3}$,0) | B. | ($\frac{2π}{3}$,0) | C. | ($\frac{π}{3}$,1) | D. | ($\frac{2π}{3}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com