日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
定義F(x,y)=(1+x)y,x,y∈(0,+∞).
(Ⅰ)令函數f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,過坐標原點O向曲線C1作切線,切點為B(n,t)(n>0),求點B的坐標;
(Ⅱ)令函數g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實數b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實數a的取值范圍;
(Ⅲ)當x,y∈N*且x<y時,證明F(x,y)>F(y,x).
分析:(I)把函數f(x)=F(1,log2(x2-4x+9))代入已知的新定義,根據對數的運算法則化簡,得到f(x)的解析式,把x=0代入f(x)的解析式即可求出m的值,求出f(x)的導函數,把x=n代入導函數求出的導函數值即為切線的斜率,然后用切點坐標表示出斜率,兩者相等列出n與t的關系式,把切點坐標代入f(x)得到另一個關于n與t的關系式,兩者聯立即可求出n與t的值,確定出點B的坐標;
(II)利用題中的定義確定出g(x)的解析式,求出g(x)的導函數,把x=x0代入導函數求出的導函數值即為-8,列出一個關系式,記作①,把-4<x0<-1記作②,由log2(x3+ax2+bx+1)大于0,把x=x0代入得到一個不等式,記作③,由①解出b,代入③得到一個不等式與②聯立,把②中的兩個端點代入不等式中即可得到a的取值范圍.
(III)令函數h(x)=
ln(1+x)
x
,求出h(x)的導函數,由分母大于0,令分子等于p(x),求出p(x)的導函數,根據p(x)導函數的正負,判斷p(x)的增減性,進而得到p(x)小于0,且得到h(x)導函數的正負,得到h(x)的增減性,利用函數的增減性即可得證;
解答:解:(I)∵F(x,y)=(1+x)y
f(x)=F(1,log2(x2-4x+9))=2log2(x2-4x-9)=x2-4x+9
故A(0,9),
又過坐標原點O向曲線C1作切線,切點為B(n,t)(n>0),f'(x)=2x-4.
t=n2-4n+9
t
n
=2n-4
,解得B(3,6)

(II)g(x)=F(1,log2(x3+ax2+bx+1))=x3+ax2+bx+1,
設曲線C2在x0(-4<x<-1)處有斜率為-8的切線,
又由題設log2(x3+ax2+bx+1)>0,g'(x)=3x2+2ax+b,
∴存在實數b使得
3
x
2
0
+2ax0+b=-8①
-4<x0<-1②
x
3
0
+a
x
2
0
+bx0+1>1③
有解,
由①得b=-8-3x02-2ax0,代入③得-2x02-ax0-8<0,
2
x
2
0
+ax0+8>0
-4<x0<-1
有解,
得2×(-4)2+a×(-4)+8>0或2×(-1)2+a×(-1)+8>0,
∴a<10或a<10,
綜上,實數a的取值范圍為a<10.
(III)令 h(x)=
ln(1+x)
x
,x≥1,由h′(x)=
x
1+x
-ln(1+x)
x2

又令 p(x)=
x
1+x
-ln(1+x),x>0

p′(x)=
1
(1+x)2
-
1
1+x
=
-x
(1+x)2
<0
,∴p(x)在[0,+∞)單調遞減.
∴當x>0時有p(x)<p(0)=0,∴當x≥1時有h'(x)<0,∴h(x)在[1,+∞)單調遞減,
1≤x<y時,有
ln(1+x)
x
ln(1+y)
y

∴yln(1+x)>xln(1+y),
∴(1+x)y>(1+y)x
∴當x,y∈N*且x<y時F(x,y)>F(y,x).
點評:此題考查學生會利用導數求曲線上過某點切線方程的斜率,會根據導函數的正負確定函數的單調性,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知M是△ABC內的一點(不含邊界),且
AB
AC
=2
3
,∠BAC=30°,若△MBC,△MCA和△MAB的面積分別為x,y,z.
(1)x+y+z=
 

(2)定義f(x,y,z)=
1
x
+
4
y
+
9
z
,則f(x,y,z)的最小值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞),令函數f(x)=F(1,log2(x2-4x+9))的圖象為曲線C,曲線C與y軸交于點A(0,m),過坐標原點O向曲線C作切線,切點為B(n,t)(n>0),設曲線C在點A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(1)令函數g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C,若存在實數b使得曲線C在x0(-4<x0<-1)處有斜率為-8的切線,求實數a的取值范圍
(2)當x,y∈N*且x<y時,證明F(x,y)>F(y,x).

查看答案和解析>>

科目:高中數學 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函數f(x)=F(3,log2(2x-x2+4)),寫出函數f(x)的定義域;
(Ⅱ)令函數g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C,若存在實數b使得曲線C在x0(-4<x0<-1)處有斜率為-8的切線,求實數a的取值范圍
(Ⅲ)當x,y∈N*且x<y時,求證F(x,y)>F(y,x).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•汕頭二模)定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函數f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點A(0,m),過坐標原點O向曲線C1作切線,切點為B(n,t)(n>0),設曲線C1在點A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值;
(Ⅱ)令函數g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實數b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實數a的取值范圍;
(Ⅲ)當x,y∈N*且x<y時,證明F(x,y)>F(y,x).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久久久久久久久久久久久久久 | 久久久久久免费毛片精品 | 午夜视频网站 | 日日摸天天做天天添天天欢 | 日本一区二区免费在线 | 日韩在线不卡视频 | 午夜大片在线观看 | 欧美视频在线播放 | 精品国产一区二区三区小蝌蚪 | 久久综合热 | 久久精品免费观看 | 日韩精品免费在线观看 | 在线精品亚洲欧美日韩国产 | 久久久久综合狠狠综合日本高清 | 欧美色综合天天久久综合精品 | 中文字幕精品一区二区三区精品 | 日韩精品久久久久 | 精品九九九九 | 天天射射天天 | 在线电影一区 | 国产成人99久久亚洲综合精品 | 久久成人一区二区 | 一级黄色裸体片 | 国产免费视频 | 久久久久久久久久影院 | 男女在线视频 | 国偷自拍| 成年人福利 | 亚洲三级黄 | 日韩欧美综合在线 | 亚洲高清av | 日韩专区中文字幕 | 国产二区免费 | 国产视频一区二区 | 中文字幕三区 | av一区在线 | 91成人在线视频 | 久久免费精品 | 九色在线观看视频 | 午夜99 | 黄www|