【題目】已知動點到點
與點
的距離之比為2,記動點
的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點作曲線C的切線,求切線方程.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年1月1日,我國實行全面二孩政策,同時也對婦幼保健工作提出了更高的要求.某城市實行網格化管理,該市婦聯在網格1與網格2兩個區域內隨機抽取12個剛滿8個月的嬰兒的體重信息,體重分布數據的莖葉圖如圖所示(單位:斤,2斤1千克),體重不超過
千克的為合格.
(1)從網格1與網格2分別隨機抽取2個嬰兒,求網格1至少有一個嬰兒體重合格且網格2至少有一個嬰兒體重合格的概率;
(2)婦聯從網格1內8個嬰兒中隨機抽取4個進行抽檢,若至少2個嬰兒合格,則抽檢通過,若至少3個合格,則抽檢為良好,求網格1在抽檢通過的條件下,獲得抽檢為良好的概率;
(3)若從網格1與網格2內12個嬰兒中隨機抽取2個,用表示網格2內嬰兒的個數,求
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|+2a,且不等式f(x)≤4的解集為{x|﹣1≤x≤3}.
(1)求實數a的值.
(2)若存在實數x0,使f(x0)≤5m2+m﹣f(﹣x0)成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①在中,若
,則
;
②已知點,則函數
的圖象上存在一點
,使得
;
③函數是周期函數,且周期與
有關,與
無關;
④設方程的解是
,方程
的解是
,則
.
其中真命題的序號是______.(把你認為是真命題的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)經過點
,且兩焦點與短軸的一個端點的連線構成等腰直角三角形.
(1)求橢圓的方程;
(2)動直線:
(
,
)交橢圓
于
、
兩點,試問:在坐標平面上是否存在一個定點
,使得以
為直徑的圓恒過點
.若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com