日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知f(x)=(
x-1
x+1
)2
(x>1),
(1)若g(x)=
1
f-1(x)
+
x
+2
,求g(x)的最小值;
(2)若不等式(1-
x
)•f-1(x)>m•(m-
x
)
對于一切x∈[
1
4
,
1
2
]
恒成立,求實數m的取值范圍.
(1)f-1(x)=
1+
x
1-
x
(0<x<1),
g(x)=
1-
x
1+
x
+
x
+2=
2
1+
x
+1+
x
≥2
2
,等號當且僅當
2
1+
x
=1+
x
,即x=3-2
2
時取得.
∴g(x)的最小值為2
2

(2)不等式即為1+
x
>m(m-
x
)
,也就是(1+m)
x
+(1-m2)>0

u=
x
,則F(u)=(1+m)u+(1-m2)>0在[
1
2
,
2
2
]
上恒成立,
F(
1
2
)>0且F(
2
2
)>0
,解得-1<m<
3
2
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知奇函數f(x)的定義域為R,且f(x)在[0,+∞)上是增函數,是否存在實數m,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)對所有θ∈[0,]都成立?若存在,求出符合條件的所有實數m的范圍,若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)判斷f(x)的奇偶性;(2)解關于x的不等式

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

當x>1時,不等式mx2+mx+1≥x恒成立,則實數m的取值范圍是(  )
A.[3+2
2
,+∞)
B.(-∞,3+2
2
]
C.[3-2
2
,+∞)
D.(-∞,3-2
2
]

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

函數y=f(x)在區間(0,+∞)內可導.導函數f(x)是減函數,且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在點(x0,f(x0))處的切線方程.
(1)用x0,f(x0),f(x0)表示m;
(2)證明:當x∈(0,+∞)時,g(x)≥f(x);
(3)若關于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b為實數,求b的取值范圍及a,b所滿足的關系.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

對于任意滿足θ∈[0,
π
2
]
的θ,使得|sinθ-pcosθ-q|≤
2
-1
2
恒成立的所有實數對(p,q)是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x2+(lga-2)x+lgb滿足f(1)=0,
(1)求a+b的最小值及此時a與b的值;
(2)對于任意x∈R,恒有f(x)≥2x-6成立.求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知定義在R上的函數f(x)=2x+
a
2x
,
(1)若f(x)為偶函數,求a的值;
(2)若f(x)在[0,+∞)上單調遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

是偶函數,且當的解集是(  )
A.(-1,0)B.(-∞,0)∪(1,2)
C.(1,2)D.(0,2)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产小视频一区二区 | 国产精品久久久久久久久久东京 | 日韩免费网站 | 亚洲二区视频 | 不卡的毛片 | 中文字幕乱码一区二区三区 | 99精品国产在热久久 | 亚洲精品乱码久久久久久金桔影视 | 麻豆久久久9性大片 | 久久69国产一区二区蜜臀 | 日本a视频 | 91久久精品一区二区二区 | 国产精品久久久久久亚洲调教 | 久久av在线| 青草精品 | 国产精品二区三区在线观看 | 午夜视频你懂得 | 亚洲一区二区三区四区五区中文 | 欧美亚洲视频 | 播放一级黄色片 | 色综合99 | 99视频在线免费观看 | 亚洲第一男人天堂 | 五月激情六月综合 | 亚洲精品一区二区另类图片 | 日韩在线欧美 | 欧美午夜一区 | 国产99精品 | 欧美黑人一区 | 91看片官网 | 欧美精品导航 | 最新中文字幕视频 | 中文字幕av亚洲精品一部二部 | 色女人天堂 | 欧美在线观看一区 | 亚洲精品国产第一综合99久久 | 成人在线一区二区 | 欧美成人性生活 | 日本不卡在线视频 | 亚洲综合在线视频 | 亚洲欧美中文日韩在线v日本 |