【題目】函數在
處取得極大值,則實數
的取值范圍為_____.
【答案】
【解析】
求得f(x)的導數,注意分解因式,討論a=0,a,a
,0<a
,a<0,由極大值的定義,即可得到所求a的范圍.
f(x)的導數為f′(x)=[ax2﹣(2a+1)x+2]ex=(x﹣2)(ax﹣1)ex,
若a=0則x<2時,f′(x)>0,f(x)遞增;x>2,f′(x)<0,f(x)遞減.
x=2處f(x)取得極大值,滿足題意;
若a,則f′(x)
(x﹣2)2ex≥0,f(x)遞增,無極值;
若a,則
2,f(x)在(
,2)遞減;在(2,+∞),(﹣∞,
)遞增,
可得f(x)在x=2處取得極小值;不滿足題意.
當0<a,則
2,f(x)在(2,
)遞減;在(
,+∞),(﹣∞,2)遞增,
可得f(x)在x=2處取得極大值,滿足題意;
若a<0,則x<2時,f′(x)>0,f(x)遞增;x>2,f′(x)<0,f(x)遞減.
x=2處f(x)取得極大值,滿足題意;綜上可得,a的范圍是:(﹣∞,).
故答案為:.
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
,直角梯形
通過直角梯形
以直線
為軸旋轉得到,且使得平面
平面
.
為線段
的中點,
為線段
上的動點.
()求證:
.
()當點
滿足
時,求證:直線
平面
.
()當點
是線段
中點時,求直線
和平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某新上市的電子產品舉行為期一個星期(7天)的促銷活動,規定購買該電子產品可免費贈送禮品一份,隨著促銷活動的有效開展,第五天工作人員對前五天中參加活動的人數進行統計,表示第
天參加該活動的人數,得到統計表格如下:
1 | 2 | 3 | 4 | 5 | |
4 | 6 | 10 | 23 | 22 |
(1)若與
具有線性相關關系,請根據上表提供的數據,用最小二乘法求出
關于
的線性回歸方程
;
(2)預測該星期最后一天參加該活動的人數(按四舍五入取到整數).
參考公式:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某新上市的電子產品舉行為期一個星期(7天)的促銷活動,規定購買該電子產品可免費贈送禮品一份,隨著促銷活動的有效開展,第五天工作人員對前五天中參加活動的人數進行統計,y表示第x天參加該活動的人數,得到統計表格如下,經計算得.
x | 1 | 2 | 3 | 4 | 5 |
y | 4 | m | 10 | 23 | 22 |
(1)若y與x具有線性相關關系,請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程;
(2)預測該星期最后一天參加該活動的人數(按四舍五入取到整數).
參考公式:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面給出了根據我國2012年~2018年水果人均占有量y(單位:kg)和年份代碼x繪制的散點圖(2012年~2018年的年份代碼x分別為1~7).
(1)根據散點圖相應數據計算得,
,求y關于x的線性回歸方程;
(2)估計我國2023年水果人均占有量是多少?(精確到1kg).
附:回歸方程中斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代儒家提出的“六藝”指:禮樂射御書數.某校國學社團預在周六開展“六藝”課程講座活動,周六這天準備排課六節,每藝一節,排課有如下要求:“樂”與“書”不能相鄰,“射”和“御”要相鄰,則針對“六藝”課程講座活動的不同排課順序共有( )
A.18種B.36種C.72種D.144種
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com