日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(Ⅰ)已知a>b>0,求證:
a
-
b
a-b

(Ⅱ)已知x,y,z均為實數,且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
求證:a,b,c中至少有一個大于0.
分析:(Ⅰ)利用綜合法,證明0<(
a
-
b
2<(
a-b
2即可;
(Ⅱ)采用反證法,a、b、c中至少有一個大于零對立面是沒有一個大于0.故可假設三者皆小于等于0推出矛盾來.
解答:證明:(Ⅰ)∵a>b>0,∴b<
ab
,∴2b<2
ab

-2
ab
<-2b

a-2
ab
+b<a+b-2b

∴0<(
a
-
b
2<(
a-b
2
a
-
b
a-b

(Ⅱ)假設a、b、c都不大于0,即a≤0,b≤0,c≤0,則a+b+c≤0.
而a+b+c=x2-2y+
π
2
+y2-2z+
π
3
+z2-2x+
π
6
=(x-1)2+(y-1)2+(z-1)2+π-3,
∵π-3>0,且無論x、y、z為何實數,(x-1)2+(y-1)2+(z-1)2≥0,
∴a+b+c>0,這與a+b+c≤0矛盾
因此,a、b、c中至少有一個大于0.
點評:本題的考點是不等式的證明,考查綜合法與反證法.反證法,其特征是先假設命題的否定成立,推證出矛盾說明假設不成立,得出原命題成立.反證法一般適合用來證明正面證明較麻煩,而其對立面包含情況較少的情況.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a<-b<0,化簡|b-
a2
|
得(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>b>0,則3a,3b,4a由小到大的順序是
3b<3a<4a
3b<3a<4a

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a<b<0,則下列不等式中正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b∈(0,+∞),a2+
b2
2
=1
,則a
1+b2
的最大值是
3
2
4
3
2
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b>0,a+b=1,則
a+1
+
b+1
的取值范圍是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品亚洲一区二区三区四区五区 | 欧美一级二级视频 | 亚洲爱爱视频 | 久久精品免费观看视频 | 久久99精品久久久久久久青青日本 | 免费在线观看av的网站 | 国产视频一区二区三区四区 | 日韩精品第一页 | 99视频在线看 | 一二三区字幕免费观看av | 理论片一区 | 国产精品视频久久久久久 | 日韩精品一区二区三区视频播放 | www.久久久| 午夜精品在线观看 | 久久国产精品视频 | av黄色在线看| 精品一区二区免费视频 | 亚洲免费在线观看 | av电影网在线观看 | 亚洲狠狠| 午夜激情av | 黄色地址 | 青青草精品| 九九九色 | 欧美第一区| 国产永久免费 | 91亚洲精品乱码久久久久久蜜桃 | 久久久久久免费 | 亚洲九九 | 国产涩涩 | 国产精品久久一区 | 久久天堂 | 午夜无码国产理论在线 | 亚洲久草| 色涩色| 欧美精品久久久 | h免费在线| 日韩欧美一区二区三区久久婷婷 | 久久久久久亚洲精品 | 超碰在线97观看 |