【題目】已知函數,其中
為常數,設
為自然對數的底數.
(1)當時,求
的最大值;
(2)若在區間
上的最大值為
,求
的值;
(3)設,若
,對于任意的兩個正實數
,證明:
.
【答案】(1)最大值為﹣1;(2)a=﹣e2;(3)見解析.
【解析】試題分析:(1)在定義域(0,+∞)內對函數f(x)求導,求其極大值,若是唯一極值點,則極大值即為最大值.
(2)在定義域(0,+∞)內對函數f(x)求導,對a進行分類討論并判斷其單調性,根據f(x)在區間(0,e]上的單調性求其最大值,并判斷其最大值是否為﹣3,若是就可求出相應的最大值.
(3)先求導,再求導,得到g′(x)為增函數,不妨令x2>x1,構造函數,利用導數即可證明.
試題解析:
(1)易知f(x)定義域為(0,+∞),
當a=﹣1時,f(x)=﹣x+lnx,,
令f′(x)=0,得x=1.
當0<x<1時,f′(x)>0;當x>1時,f′(x)<0,
∴f(x)在(0,1)上是增函數,在(1,+∞)上是減函數.
f(x)max=f(1)=﹣1.
∴函數f(x)在(0,+∞)上的最大值為﹣1,
(2)∵.
①若,則f′(x)≥0,從而f(x)在(0,e]上是增函數,
∴f(x)max=f(e)=ae+1≥0,不合題意,
②若,則由
,即
由,即
,
從而f(x)在(0,﹣)上增函數,在(﹣
,e]為減函數
∴
令,則
,
∴a=﹣e2,
(3)證明:∵g(x)=xf(x)=ax2+xlnx,x>0
∴,
∴g′(x)為增函數,不妨令x2>x1
令,/p>
∴,
∵,
∴
而h(x1)=0,知x>x1時,h(x)>0
故h(x2)>0,
即.
科目:高中數學 來源: 題型:
【題目】某市高中全體學生參加某項測評,按得分評為兩類(評定標準見表1).根據男女學生比例,使用分層抽樣的方法隨機抽取了10000名學生的得分數據,其中等級為
的學生中有40%是男生,等級為
的學生中有一半是女生.等級為
和
的學生統稱為
類學生,等級為
和
的學生統稱為
類學生.整理這10000名學生的得分數據,得到如圖2所示的頻率分布直方圖,
類別 | 得分( | |
表1
(I)已知該市高中學生共20萬人,試估計在該項測評中被評為類學生的人數;
(Ⅱ)某5人得分分別為45,50,55,75,85.從這5人中隨機選取2人組成甲組,另外3人組成乙組,求“甲、乙兩組各有1名類學生”的概率;
(Ⅲ)在這10000名學生中,男生占總數的比例為51%, 類女生占女生總數的比例為
,
類男生占男生總數的比例為
,判斷
與
的大小.(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,一個焦點坐標是,離心率為
.
(1)求橢圓的標準方程;
(2)過作直線交橢圓于
兩點,
是橢圓的另一個焦點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列:
滿足:
,
或1(
).對任意
,都存在
,使得
.,其中
且兩兩不相等.
(I)若.寫出下列三個數列中所有符合題目條件的數列的序號;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)記.若
,證明:
;
(Ⅲ)若,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數),直線
的參數方程為
(
為參數),設
與
的交點為
,當
變化時,
的軌跡為曲線
.
(1)寫出的普遍方程及參數方程;
(2)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,設曲線
的極坐標方程為
,
為曲線
上的動點,求點
到
的距離的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com