【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c,已知cos2C= .
(1)求sinC的值;
(2)當a=2,2sinA=sinC時,求b及c的長.
【答案】
(1)解:因為cos2C=1﹣2sin2C= ,及0<C<π
所以 sinC= .
(2)解:當a=2,2sinA=sinC時,由正弦定理 =
,解得c=4.
由cos2C=2cos2C﹣1= ,及0<C<π 得cosC=±
.
由余弦定理 c2=a2+b2﹣2abcosC,得b2± b﹣12=0,
解得b= 或b=2
.
所以b= 或b=2
,c=4.
【解析】(1)注意角的范圍,利用二倍角公式求得sinC的值.(2)利用正弦定理先求出邊長c,由二倍角公式求cosC,用余弦定理解方程求邊長b.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關知識點,需要掌握正弦定理:;余弦定理:
;
;
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知橢圓E:=1(a>b>0)的焦距為2
, 且該橢圓經過點(
,
).
(Ⅰ)求橢圓E的方程;
(Ⅱ)經過點P(﹣2,0)分別作斜率為k1 , k2的兩條直線,兩直線分別與橢圓E交于M,N兩點,當直線MN與y軸垂直時,求k1k2的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某商店一個月內每天的顧客人數進行統計,得到樣本的莖葉圖(如圖所示).則該樣本的中位數、眾數、極差分別是( 。
A.46 45 56
B.46 45 53
C.47 45 56
D.45 47 53
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項的和記為Sn . 如果a4=﹣12,a8=﹣4.
(1)求數列{an}的通項公式;
(2)求Sn的最小值及其相應的n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓:
的離心率
,短軸右端點為
,
為線段
的中點.
(Ⅰ) 求橢圓的方程;
(Ⅱ)過點任作一條直線與橢圓
相交于兩點
,試探究在
軸上是否存在定點
,使得
,若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某車間為了規定工時定額,需要確定加工某零件所花費的時間,為此做了四次實驗,得到的數據如表:
零件的個數x(個) | 2 | 3 | 4 | 5 |
加工的時間y(小時) | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標系中畫出表中數據的散點圖;
(2)求出y關于x的線性回歸方程y= x+
,并在坐標系中畫出回歸直線;
(3)試預測加工6個零件需要多少時間?
(注: =
,
=
﹣
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在
軸上,離心率
.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點為橢圓
上一點,直線
的方程為
,求證:直線
與橢圓
有且只有一個交點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com