【題目】已知函數,
,
,其中e為自然對數的底數.
求函數
的單調區間;
求證:
;
若
恒成立,求實數k的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+b,x∈[-1,1],a,b∈R,且是常數.
(1)若a是從-2,-1,0,1,2五個數中任取的一個數,b是從0,1,2三個數中任取的一個數,求函數y=f(x)為奇函數的概率;
(2)若a是從區間[-2,2]中任取的一個數,b是從區間[0,2]中任取的一個數,求函數y=f(x)有零點的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區間的頻率估計最高氣溫位于該區間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(理)設b和c分別是先后拋擲一枚骰子得到的點數,用隨機變量ξ表示方程x2+bx+c=0實根的個數(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率.
(2)求ξ的分布列和數學期望.
(3)求在先后兩次出現的點數中有5的條件下,方程x2+bx+c=0有實根的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,摩天輪上的一點在
時刻距離地面的高度滿足
,已知該摩天輪的半徑為60米,摩天輪轉輪中心O距離地面的高度是70米,摩天輪逆時針做勻速轉動,每6分鐘轉一圈,點
的起始位置在摩天輪的最低點
處.
(1)根據條件求出y(米)關于(分鐘)的解析式;
(2)在摩天輪從最低點開始計時轉動的一圈內,有多長時間點P距離地面不低于100米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com