【題目】一個工廠在某年里連續10個月每月產品的總成本(萬元)與該月產量
(萬件)之間有如下一組數據:
1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 | |
2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點圖,發現可用線性回歸模型擬合與
的關系,請用相關系數
加以說明;
(2)①建立月總成本與月產量
之間的回歸方程;②通過建立的
關于
的回歸方程,估計某月產量為1.98萬件時,產品的總成本為多少萬元?(均精確到0.001)
附注:①參考數據:,
,
,
,
.
②參考公式:相關系數,
,
.
科目:高中數學 來源: 題型:
【題目】如圖,已知圓E:經過橢圓C:
(
)的左右焦點
,
,與橢圓C在第一象限的交點為A,且
,E,A三點共線.
(1)求橢圓C的方程;
(2)是否存在與直線(O為原點)平行的直線l交橢圓C于M,N兩點.使
,若存在,求直線l的方程,不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程是
(
為參數),曲線
的直角坐標方程為
,將曲線
上的點向下平移1個單位,然后橫坐標伸長為原來的2倍,縱坐標不變,得到曲線
.
(1)求曲線和曲線
的直角坐標方程;
(2)若曲線和曲線
相交于
兩點,求三角形
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的長軸是短軸的兩倍,點
在橢圓上.不過原點的直線
與橢圓相交于
、
兩點,設直線
、
、
的斜率分別為
、
、
,且
、
、
恰好構成等比數列,
(1)求橢圓的方程;
(2)試判斷是否為定值?若是,求出這個值;若不是,請說明理由?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將所有平面向量組成的集合記作,
是從
到
的對應關系,記作
或
,其中
、
、
、
都是實數,定義對應關系
的模為:在
的條件下
的最大值記作
,若存在非零向量
,及實數
使得
,則稱
為
的一個特殊值;
(1)若,求
;
(2)如果,計算
的特征值,并求相應的
;
(3)若,要使
有唯一的特征值,實數
、
、
、
應滿足什么條件?試找出一個對應關系
,同時滿足以下兩個條件:①有唯一的特征值
,②
,并驗證
滿足這兩個條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校共有學生15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300名學生每周平均體育運動時間的樣本數據(單位:小時).
(1)應收集多少位女生的樣本數據?
(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據的分組區間為:,
,
,
,
,
,估計該校學生每周平均體育運動時間超過4小時的概率;
(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯表,并判斷是否有的把握認為“該校學生的毎周平均體育運動時間與性別有關”.
男生 | 女生 | 總計 | |
每周平均體育運動時間不超過4小時 | |||
每周平均體育運動時間超過4小時 | |||
總計 |
附:,其中
.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了預測下月產品銷售情況,找出了近7個月的產品銷售量(單位:萬件)的統計表:
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售量 |
但其中數據污損不清,經查證,
,
.
(1)請用相關系數說明銷售量與月份代碼
有很強的線性相關關系;
(2)求關于
的回歸方程(系數精確到0.01);
(3)公司經營期間的廣告宣傳費(單位:萬元)(
),每件產品的銷售價為10元,預測第8個月的毛利潤能否突破15萬元,請說明理由.(毛利潤等于銷售金額減去廣告宣傳費)
參考公式及數據:,相關系數
,當
時認為兩個變量有很強的線性相關關系,回歸方程
中斜率和截距的最小二乘估計公式分別為
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com