日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】已知函數fx)=(kx+ex2x,若fx)<0的解集中有且只有一個正整數,則實數k的取值范圍為 (  )

A. [ B. ]

C. [D. [

【答案】A

【解析】

fx)<0轉化為(kx+ex2x,即kx+ ,令gx)=,利用導數研究gx)的單調性,數形結合得答案.

fx)<0,得(kx+ex2x,即kx+,令gx)=,則g′(x)=,當x(﹣∞,1)時,g′(x)>0,當x1+∞)時,g′(x)<0.∴gx)在(﹣∞,1)上單調遞增,在(1+∞)上單調遞減.作出函數gx)與ykx+的圖象如圖:ykx+的圖象過定點P0),A1),B2),∵ .∴實數k的取值范圍為[ ).

故選:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,橢圓的方程為,左右焦點分別為為短軸的一個端點,且的面積為.設過原點的直線與橢圓交于兩點,為橢圓上異于的一點,且直線的斜率都存在,.

(1)求的值;

(2)設為橢圓上位于軸上方的一點,且軸,為曲線上不同于的兩點,且,設直線軸交于點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知.

(1)當時,求函數圖象在處的切線方程;

(2)若對任意,不等式恒成立,求的取值范圍;

(3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線過點,過點作直線與拋物線交于不同兩點,過軸的垂線分別與直線交于點,其中為坐標原點.

1)求拋物線的方程;

2)寫出拋物線的焦點坐標和準線方程;

3)求證:為線段的中點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)當時,討論函數的單調性;

(2)若,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數學中有許多形狀優美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個結論:

①曲線C恰好經過6個整點(即橫、縱坐標均為整數的點);

②曲線C上任意一點到原點的距離都不超過

③曲線C所圍成的“心形”區域的面積小于3.

其中,所有正確結論的序號是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左.右焦點分別為為坐標原點.

(1)若斜率為的直線交橢圓于點,若線段的中點為,直線的斜率為,求的值;

(2)已知點是橢圓上異于橢圓頂點的一點,延長直線分別與橢圓交于點,設直線的斜率為,直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若在區間上不是單調函數,求實數的范圍;

(2)若對任意,都有恒成立,求實數的取值范圍;

(3)當時,設,對任意給定的正實數,曲線上是否存在兩點,使得是以為坐標原點)為直角頂點的直角三角形,而且此三角形斜邊中點在軸上?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示:在五面體ABCDEF中,四邊形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

(Ⅰ)求證:平面ABCD⊥平面EDCF;

(Ⅱ)求三棱錐A-BDF的體積.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产一区在线免费观看 | 99热精品在线 | 在线观看91精品国产入口 | 国产精品久久久久久久一区探花 | 欧美精品一区二区视频 | 国严精品久久久久久亚洲影视 | 亚洲精品欧美 | 妞干网在线视频 | 一区在线免费观看 | 国产素人视频 | 日本三级网| 国产免费一区二区三区最新不卡 | 日本免费三片免费观看 | 亚洲欧美在线免费观看 | 精品久久久久久久 | av黄在线 | 久久伊人精品视频 | av片在线观看 | 亚洲久久久久 | 成人高清在线 | 亚洲午夜精品在线观看 | 欧美一区二区三区视频在线观看 | 久久99深爱久久99精品 | 国产综合精品视频 | 欧美日韩亚洲国内综合网 | 99这里只有精品视频 | 一区二区在线 | 一级黄色片子免费看 | 亚洲综合无码一区二区 | 成年无码av片在线 | 日本不卡一区二区三区在线观看 | 91在线观看视频 | 成 人 a v天堂 | 日韩欧美一级在线 | 国内精品在线视频 | 日本在线播放 | 黄色工厂在线观看 | 国产一级免费 | 欧美国产精品一区 | 国精品产品区三区 | 男女国产视频 |