日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足
a
2
n+1
=2
a
2
n
+anan+1
,且a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=
nan
(2n+1)•2n
是否存在正整數(shù)m、n(1<m<n),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的m、n的值,若不存在,請(qǐng)說(shuō)明理由.
分析:(Ⅰ)由
a
2
n+1
=2
a
2
n
+anan+1
,化簡(jiǎn)可得數(shù)列{an}是公比為2的等比數(shù)列,由a2+a4=2a3+4,求出首項(xiàng),即可求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求出數(shù)列{bn}的通項(xiàng),利用得b1,bm,bn成等比數(shù)列,正整數(shù)m、n(1<m<n),即可得出結(jié)論.
解答:解:(Ⅰ)因?yàn)?span id="p9vv5xb5" class="MathJye">
a
2
n+1
=2
a
2
n
+anan+1
所以(an+1+an)(2an-an+1)=0,
因?yàn)閍n>0,?
所以有2an-an+1=0,即2an=an+1
所以數(shù)列{an}是公比為2的等比數(shù)列,?
由a2+a4=2a3+4得2a1+8a1=8a1+4,解得a1=2.
從而數(shù)列{an}的通項(xiàng)公式為an=2n.…(6分)
(II)bn=
nan
(2n+1)•2n
=
n
2n+1

若b1,bm,bn成等比數(shù)列,則(
m
2m+1
)2=
1
3
n
2n+1

3
n
=
-2m2+4m+1
m2

所以-2m2+4m+1>0,解得:1-
6
2
<m<1+
6
2

又m∈N*,且m>1,所以m=2,此時(shí)n=12.
故當(dāng)且僅當(dāng)m=2,n=12,使得b1,bm,bn成等比數(shù)列.…(13分)
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查等比數(shù)列的證明,考查數(shù)列的通項(xiàng),正確運(yùn)用數(shù)列遞推式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較數(shù)學(xué)公式數(shù)學(xué)公式的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:青島二模 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測(cè)試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年高考復(fù)習(xí)方案配套課標(biāo)版月考數(shù)學(xué)試卷(二)(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 欧美精品在线观看一区二区 | 精品国产乱码久久久久久久软件 | 午夜在线观看视频网站 | 国产成人亚洲精品 | 亚洲一区二区三区四区在线 | 姐姐在线观看动漫第二集免费 | 在线观看成人小视频 | 日本在线精品 | t66y最新地址一地址二69 | 成人免费视频一区二区 | 人人超碰在线观看 | 成人亚洲免费视频 | 国产精品久久久久久久久久免费看 | 国精产品一区二区三区黑人免费看 | 欧美成在线观看 | 在线免费中文字幕 | 国产精品观看 | 一区二区三区国产好 | 日韩在线亚洲 | 国产成人午夜精品5599 | 国产日韩欧美一区 | 国产黄在线播放 | 国产日韩av在线 | 国产日韩91| 91成人区 | 日本高清h色视频在线观看 欧美成人精品一区二区三区 | 国产成人免费视频 | 日韩在线精品 | 黄频免费在线观看 | 91亚洲国产成人久久精品网站 | 国产精品久久久久久久久久久新郎 | 国产精品1区 | 欧美久久久久久久久中文字幕 | 激情小视频在线观看 | 成人欧美一区二区三区在线湿哒哒 | 1区2区3区视频 | 日韩视频在线免费观看 | 天天看天天摸天天操 | 国产精品一区一区三区 | sis色中色 | 偷拍自拍亚洲色图 |