日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知集合Sn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2,…,n}(n≥2)對于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定義A與B的差為A-B=(|a1-b1|,|a2-b2|,…|an-bn|);
A與B之間的距離為
(Ⅰ)證明:?A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅱ)證明:?A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三個數中至少有一個是偶數
(Ⅲ)設P⊆Sn,P中有m(m≥2)個元素,記P中所有兩元素間距離的平均值為
證明:
【答案】分析:(Ⅰ)因為每個數位上都是0或者1,取差的絕對值仍然是0或者1,符合Sn的要求.
然后是減去C的數位,不管減去的是0還是1,每一個a和每一個b都是同時減去的,
因此不影響他們原先的差.
(Ⅱ)先比較A和B有幾個不同(因為距離就是不同的有幾個),然后比較A和C有幾個不同,
這兩者重復的(就是某一位上A和B不同,A和C不同,那么這一位上B和C就相同)去掉兩次
(因為在前兩次比較中各計算了一次),剩下的就是B和C的不同數目,
很容易得到這樣的關系式:h=k+l-2i,從而三者不可能同為奇數.
(Ⅲ)首先理解P中會出現Cm2個距離,所以平均距離就是距離總和再除以Cm2
而距離的總和仍然可以分解到每個數位上,第一位一共產生了多少個不同,
第二位一共產生了多少個不同,如此下去,直到第n位.然后思考,
第一位一共m個數,只有0和1會產生一個單位距離,因此只要分開0和1的數目即可,
等算出來,一切就水到渠成了.
此外,這個問題需要注意一下數學語言的書寫規范.
解答:解:(1)設A=(a1,a2,…,an),B=(b1,b2,…,bn),C=(c1,c2,..,cn)∈Sn
因ai,bi∈0,1,故|ai-bi|∈0,1,(i=1,2,…,n)a1b1∈0,1,
即A-B=(|a1-b1|,|a2-b2|,…,|an-bn|)∈Sn
又ai,bi,ci∈(0,1),i=1,2,…,n
當ci=0時,有||ai-ci|-|bi-ci||=|ai-bi|;
當ci=1時,有||ai-ci|-|bi-ci||=|(1-ai)-(1-bi)=|ai-bi|

(2)設A=(a1,a2,…,an),B=(b1,b2,…,bn),C=(c1,c2,..,cn)∈Sn
記d(A,B)=k,d(A,C)=l,d(B,C)=h
記O=(0,0,…,0)∈Sn,由第一問可知:
d(A,B)=d(A-A,B-A),d=(O,B-A)=k
d(A,C)=d(A-A,C-A)=d(O,C-A)=l
d(B,C)=d(B-A,C-A)=h
即|bi-ai|中1的個數為k,|ci-ai|中1的個數為l,(i=1,2,…,n)
設t是使|bi-ai|=|ci-ai|=1成立的i的個數,則有h=k+l-2t,
由此可知,k,l,h不可能全為奇數,即d(A,B),d(A,C),d(B,C)三個數中至少有一個是偶數.
(3)顯然P中會產生Cm2個距離,也就是說,其中表示P中每兩個元素距離的總和.
分別考察第i個位置,不妨設P中第i個位置一共出現了ti個1,那么自然有m-ti個0,因此在這個位置上所產生的距離總和為,(i=1,2,…,n),
那么n個位置的總和

點評:本題是綜合考查集合、數列與推理綜合的應用,這道題目的難點主要出現在讀題上,需要仔細分析,以找出解題的突破點.題目所給的條件其實包含兩個定義,第一個是關于Sn的,其實Sn中的元素就是一個n維的坐標,其中每個坐標值都是0或者1,也可以這樣理解,就是一個n位數字的數組,每個數字都只能是0和1,第二個定義叫距離,距離定義在兩者之間,如果直觀理解就是看兩個數組有多少位不同,因為只有0和1才能產生一個單位的距離,因此這個大題最核心的就是處理數組上的每一位數,然后將處理的結果綜合起來,就能看到整體的性質了.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i=1,2,…,n}(n≥2)對于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定義A與B的差為A-B=(|a1-b1|,|a2-b2|,…|an-bn|);
A與B之間的距離為d(A,B)=
i-1
 |a1-b1|

(Ⅰ)當n=5時,設A=(0,1,0,0,1),B=(1,1,1,0,0),求d(A,B);
(Ⅱ)證明:?A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅲ)證明:?A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三個數中至少有一個是偶數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合Sn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2,…,n}(n≥2)對于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定義A與B的差為A-B=(|a1-b1|,|a2-b2|,…|an-bn|);
A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)證明:?A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅱ)證明:?A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三個數中至少有一個是偶數
(Ⅲ)設P⊆Sn,P中有m(m≥2)個元素,記P中所有兩元素間距離的平均值為
.
d
(P)

證明:
.
d
(P)
mn
2(m-1)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化三模)已知集合Sn={X|X=(x1,x2,…,xn),xi∈N*,i=1,2,…,n}(n≥2).對于A=(a1,a2,…an)∈Sn,B=(b1,b2,…,bn)∈Sn,A與B之間的距離為d(A,B)=
ni=1
|ai-bi|

(1)當n=5時,設A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,則a5
=1或5
=1或5

(2)記I=(1,1,…,1)∈sn.若A、B∈Sn,且d(I,A)=d(I,B)=P,則d(A,B)的最大值為
2P
2P

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當n=5時,設A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)(ⅰ)證明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(ⅱ)設A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?說明理由;
(Ⅲ)記I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當n=5時,設A=(1,2,1,2,5),B=(2,4,2,1,3),求d(A,B);
(Ⅱ)證明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(Ⅲ)記I=(1,1,…,1)∈S20.若A,B∈S20,且d(I,A)=d(I,B)=13,求d(A,B)的最大值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美在线免费 | 福利视频网址导航 | 中文一级片 | 色妞色视频一区二区三区四区 | 国产黄色精品视频 | 国产精品日日摸天天碰 | 福利影院在线观看 | 91成人精品 | 久草综合在线 | 欧美综合视频 | 成 人 黄 色 片 在线播放 | 国产全肉乱妇杂乱视频 | 久久亚洲欧美 | 久草国产视频 | 国产精品乱码一区二区三区 | 精品国产一区二区在线观看 | 日韩www | 久久免费高清视频 | 日韩一区二区中文字幕 | 日韩av在线不卡 | 亚洲激情一区 | 91久久久精品 | 成人h视频在线观看 | 免费网站观看www在线观 | 久久精品99久久久久久 | 天天搞天天干 | 中文字幕三级 | 天天舔天天干 | 一区免费视频 | 免费三级黄色片 | 久艹视频在线观看 | 久久黄色免费视频 | 日韩网站免费观看 | 国产白丝精品91爽爽久久 | 免费看色片 | 二区三区在线观看 | 日本美女性生活 | 午夜在线视频观看 | 日韩国产中文字幕 | 亚洲精品在线视频 | 一级片免费在线观看 |