日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

3.已知tanα=3,α∈(0,π),則cos(${\frac{5π}{2}$+2α)=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

分析 利用誘導公式進行化簡求值得到cos(${\frac{5π}{2}$+2α)=-sin2α.直接把sin2α轉(zhuǎn)化為:2sinαcosα=$\frac{2sinαcosα}{1}$=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{1+ta{n}^{2}α}$,再把已知條件代入即可得到結(jié)論.

解答 解:∵tanα=3,
∴cos(${\frac{5π}{2}$+2α)
=cos($\frac{π}{2}$+2α)
=-sin2α
=-2sinαcosα
=-$\frac{2sinαcosα}{1}$
=-$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$
=-$\frac{2tanα}{1+ta{n}^{2}α}$
=-$\frac{2×3}{1+{3}^{2}}$
=-$\frac{3}{5}$.
故選:C.

點評 本題主要考查二倍角公式的應(yīng)用以及'1'的代換.解決本題的關(guān)鍵在于把sin2α轉(zhuǎn)化為:2sinαcosα=$\frac{2sinαcosα}{1}$=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{1+2ta{n}^{2}α}$.考查公式的熟練應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.$\sqrt{3}+1$與$\sqrt{3}-1$,兩數(shù)的等比中項是(  )
A.1B.-1C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知向量$\overrightarrow a$=(cosx+sinx,2sinx),$\overrightarrow b$=(cosx-sinx,cosx).令f(x)=$\overrightarrow a$•$\overrightarrow b$.
(I)求f(x)的最小正周期;
(II)求f(x)在[${\frac{π}{4}$,$\frac{3π}{4}}$]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,已知點F1,F(xiàn)2是橢圓C1:$\frac{x^2}{4}$+$\frac{y^2}{2}$=1的左、右焦點,點P是橢圓C2:$\frac{x^2}{2}$+y2=1上異于其長軸端點的任意動點,直線PF1,PF2與橢圓C1的交點分別是A,B和M,N,記直線AB,MN的斜率分別為k1,k2
(1)求證:k1•k2為定值;
(2)求|AB|•|MN|得取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知兩個等差數(shù)列{an},{bn},它們的前n項和分別是Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+3}{3n-1}$,則$\frac{{a}_{7}}{{b}_{7}}$=$\frac{29}{38}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知點(3,9)在函數(shù)f(x)=1+ax的圖象上,則log${\;}_{\frac{1}{4}}$a+loga8=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,點M在線段EC上.
(Ⅰ)當點M為EC中點時,求證:BM∥平面ADEF;
(Ⅱ)當平面BDM與平面ABF所成銳二面角的余弦值為$\frac{\sqrt{6}}{6}$時,求棱錐M-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在四棱錐S-ABCD中,底面ABCD為菱形,E、P、Q分別是棱AD、SC、AB的中點,且SE⊥平面ABCD.
(1)求證:PQ∥平面SAD;
(2)求證:平面SAC⊥平面SEQ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$(a>0,b>0).
(1)當a=b=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)在(2)的條件下,試證明函數(shù)f(x)的單調(diào)性,并解不等式f(1-m)+f(1+m2)<0.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产欧美精品一区二区 | 日本不卡在线播放 | 国产激情网 | 色哟哟入口国产精品 | 蜜桃精品噜噜噜成人av | 亚洲小视频在线观看 | 色天天综合 | 毛片一区 | 成人网在线观看 | 欧美一级黄 | 日韩黄色影院 | 一区二区三区在线免费 | 一区二区三区日韩 | 国产欧美在线观看 | 久久精品一区二区三区不卡牛牛 | 黄视频在线播放 | 天天干天天操天天干 | 欧美一区二区三区在线播放 | 一级片av | 精品无人国产偷自产在线 | 黄色高清网站 | av一级在线| 日韩在线视频免费观看 | 午夜看看 | 色网站在线观看 | 国产va在线观看 | 国产精品久久久久久久久借妻 | 日韩在线毛片 | 亚洲在线观看视频 | 欧美特黄视频 | 在线观看免费av网站 | 91亚洲精品乱码久久久久久蜜桃 | 日韩黄色在线视频 | 国产中文字幕一区二区 | 91小视频在线观看 | 欧美日韩性 | 日韩成人中文字幕 | 中文字幕av久久爽av | 日韩精品在线播放 | 国产中文字幕在线观看 | 成人免费av |