日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x+alnx,其中a為常數,且a≤-1.
(Ⅰ)當a=-1時,求f(x)在[e,e2](e=2.718 28…)上的值域;
(Ⅱ)若f(x)≤e-1對任意x∈[e,e2]恒成立,求實數a的取值范圍.
【答案】分析:(Ⅰ)求函數f(x)=x-lnx的導數,利用導數判斷在[e,e2]上的單調性,便可求值域;
(Ⅱ)依題意就是求f(x)在[e,e2]上的最大值,用a表示出函數最大值,再將恒成立轉化為函數最值問題,結合導數法解決即可.
解答:解:(Ⅰ)當a=-1時,f(x)=x-lnx,
,(2分)
令f'(x)>0,即,解得x>1,所以函數f(x)在(1,+∞)上為增函數,
據此,函數f(x)在[e,e2]上為增函數,(4分)
而f(e)=e-1,f(e2)=e2-2,所以函數f(x)在[e,e2]上的值域為[e-1,e2-2](6分)
(Ⅱ)由,令f'(x)=0,得,即x=-a,
當x∈(0,-a)時,f'(x)<0,函數f(x)在(0,-a)上單調遞減;
當x∈(-a,+∞)時,f'(x)>0,函數f(x)在(-a,+∞)上單調遞增;(7分)
若1≤-a≤e,即-e≤a≤-1,易得函數f(x)在[e,e2]上為增函數,
此時,f(x)max=f(e2),要使f(x)≤e-1對x∈[e,e2]恒成立,只需f(e2)≤e-1即可,
所以有e2+2a≤e-1,即
,即,所以此時無解.(8分)
若e<-a<e2,即-e>a>-e2,易知函數f(x)在[e,-a]上為減函數,在[-a,e2]上為增函數,
要使f(x)≤e-1對x∈[e,e2]恒成立,只需,即

.(10分)
若-a≥e2,即a≤-e2,易得函數f(x)在[e,e2]上為減函數,
此時,f(x)max=f(e),要使f(x)≤e-1對x∈[e,e2]恒成立,只需f(e)≤e-1即可,
所以有e+a≤e-1,即a≤-1,又因為a≤-e2,所以a≤-e2.(12分)
綜合上述,實數a的取值范圍是.(13分)
點評:本題考查函數的導數研究函數的單調性,以及函數的導數在求函數最值的應用,解題的關鍵是將恒成立問題轉化為函數最值問題解決,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久久久久99 | 亚洲特黄 | 午夜一区二区三区 | 成人国产网站 | 四虎影院在线播放 | 97免费在线视频 | 免费黄网站在线观看 | 欧美理论在线观看 | 黄色在线免费网站 | 亚洲欧美国产高清va在线播放 | 一区二区三区在线观看视频 | av大片在线观看 | 成人福利片 | 久久久综合视频 | 婷婷色在线 | 成人午夜在线观看 | 欧美一级做性受免费大片免费 | 欧美精品一 | 高清久久久 | 欧美 日韩 国产 成人 在线 | 成年人黄色大片 | 三级视频在线 | eeuss一区二区| 成人a级片 | 亚洲成人精品一区 | 免费一级全黄少妇性色生活片 | 亚洲国产日韩欧美 | 亚洲天堂v | 一区二区三区在线看 | 国产日韩中文字幕 | 国产一区二区欧美 | 亚洲日本精品 | 高潮毛片又色又爽免费 | 亚洲日本在线观看 | 国产午夜三级一区二区三 | 免费黄色av网站 | 色综合一区二区 | 一边摸一边操 | 精品一区二区三区免费看 | 一级欧美一级日韩 | 中文字幕免费在线观看 |