日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

設二次函數f(x)=ax2+bx+c的導數為f'(x),f′(0)>0,對于任意的實數x恒有f(x)≥0,則數學公式的最小值是________.

0
分析:先求導,由f′(0)>0可得b>0,因為對于任意實數x都有f(x)≥0,所以結合二次函數的圖象可得a>0且b2-4ac≤0,又因為 ,利用均值不等式即可求解.
解答:∵f'(x)=2ax+b,
∴f'(0)=b>0;
∵對于任意實數x都有f(x)≥0,
∴a>0且b2-4ac≤0,
∴b2≤4ac,
∴c>0;

當4a=c時取等號.
故答案為:0.
點評:本題考查了求導公式,二次函數恒成立問題以及均值不等式,綜合性較強.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+bx+c滿足f(-1)=0,對于任意的實數x都有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求證:a>0,c>0;
(3)當x∈(-1,1)時,函數g(x)=f(x)-mx,m∈R是單調的,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個根x1、x2滿足0<x1<x2
1
a
,且函數f(x)的圖象關于直線x=x0對稱,則有( 。
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一個零點,求a2+b2的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+bx+c(a≠0)滿足:當x=1時,f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在實數m,n,使x∈[m,n]時,函數的值域也是[m,n]?若存在,則求出這樣的實數m,n;若不存在,則說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設二次函數f(x)=x2+x+a(a>0),若f(m)<0,則有( 。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 美日韩一区二区三区 | 国产成人免费在线观看视频 | 亚洲二区视频 | 午夜社区 | 国产成人午夜片在线观看高清观看 | 黑人巨大精品欧美一区二区免费 | 成人精品一区二区 | 你懂的网址在线 | 最近日韩中文字幕 | 日本在线看片 | 黄色一级大片在线免费看产 | 精久久 | 中文字幕日韩欧美一区二区三区 | 欧美一区二区黄色片 | 亚洲精品视频在线播放 | 精品在线播放 | 台湾av在线 | 91在线最新 | 成人精品鲁一区一区二区 | 日韩精品1区2区3区 欧美高清不卡 | 九九视频这里只有精品 | 日韩毛片在线观看 | 麻豆久久久9性大片 | 日韩视频在线观看 | 亚洲电影一区二区三区 | 一区二区三区在线免费观看 | 久久久资源 | 91碰碰| 久久久国产精品入口麻豆 | 日本免费视频 | 亚州视频一区二区三区 | 黄色毛片在线看 | 久久99精品国产麻豆婷婷洗澡 | 99热在线免费观看 | 日本在线观看不卡 | 三级av在线 | 中文字幕国产一区 | 欧美日韩精品一区 | 国产视频导航 | 日韩精品免费观看 | 国产成人精品一区二区三区 |