【題目】已知下圖中,四邊形 ABCD是等腰梯形, ,
,O、Q分別為線段AB、CD的中點,OQ與EF的交點為P,OP=1,PQ=2,現將梯形ABCD沿EF折起,使得
,連結AD、BC,得一幾何體如圖所示.
(Ⅰ)證明:平面ABCD平面ABFE;
(Ⅱ)若上圖中, ,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)先根據,
得
⊥平面
,故
,結合勾股定理
,由線面垂直判定定理可得
平面
,由面面垂直判定定理可得結論;(2)以
為原點,
所在的直線為
軸建立空間直角坐標系
,可求得面
的一個法向量
,面
的一個法向量
,求出向量夾角即可.
試題解析: (1)證明:在圖中,四邊形為等腰梯形,
分別為線段
的中點,
∴為等腰梯形
的對稱軸,又
//
,
∴、
,①
在圖中,∵,∴
由①及,得
⊥平面
,∴
,
又,∴
平面
,
又平面
,∴平面
平面
;
(2)在圖中,由 ,
,易得
,
,
以為原點,
所在的直線為
軸建立空間直角坐標系
,如圖所示,
則、
、
得,
設是平面
的一個法向量,
則,得
,
取,得
同理可得平面的一個法向量
設所求銳二面角的平面角為,
則=
所以平面ADE與平面所成銳二面角的余弦值為
.
科目:高中數學 來源: 題型:
【題目】設關于的一元二次方程
.
(1)若是從0,1,2,3四個數中任取的一個數,
是從0,1,2三個數中任取的一個數,求上述方程有實根的概率;
(2)若時從區間
上任取的一個數,
是從區間
上任取的一個數,求上述方程有實根的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數在區間
上,
,
,
,
,
,
均可為一個三角形的三邊長,則稱函數
為“三角形函數”.已知函數
在區間
上是“三角形函數”,則實數
的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓與拋物線
共焦點
,拋物線上的點M到y軸的距離等于
,且橢圓與拋物線的交點Q滿足
.
(I)求拋物線的方程和橢圓的方程;
(II)過拋物線上的點作拋物線的切線
交橢圓于
、
兩點,求此切線在x軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某舉重運動隊為了解隊員的體重分布情況,從50名隊員中抽取10名作調查.抽取時現將全體隊員隨機按1~50編號,并按編號順序平均分成10組,每組抽一名,且各組內抽取的編號依次增加5進行系統抽樣.
(1)若第5組抽出的號碼為22,寫出所有被抽取出來的編號;
(2)分別統計被抽取的10名隊員的體重(單位:公斤),獲得如圖所示的體重數據的莖葉圖,根據莖葉圖求該樣本的平均數和中位數;
(3)在題(2)的莖葉圖中,從題中不輕于73公斤的隊員中隨機抽取2名隊員的體重數據,求體重為81公斤的隊員被抽到的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以,
,
,
,
,
,
分組的頻率分布直方圖如圖所示.
(1)求直方圖中的值;
(2)求月平均用電量的眾數和中位數;
(3)在月平均用電量在,
,
的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在
的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知曲線
(
為參數),在以原點
為極點,
軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為:
.
(Ⅰ)求曲線的普通方程和直線的直角坐標方程;
(Ⅱ)過點且與直線平行的直線
交
于
,
兩點,求點
到
,
兩點的距離之積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,順次連接橢圓
的四個頂點得到的四邊形的面積為16.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的頂點
的直線
交橢圓于另一點
,交
軸于點
,若
、
、
成等比數列,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為
,短軸的兩個端點分別為
.
(Ⅰ)若為等邊三角形,求橢圓
的方程;
(Ⅱ)若橢圓的短軸長為
,過點
的直線
與橢圓
相交于
兩點,且
,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com