【題目】已知函數的導函數為
,且對任意的實數
都有
(
是自然對數的底數),且
,若關于
的不等式
的解集中恰有唯一一個整數,則實數
的取值范圍是( )
A. B.
C.
D.
【答案】A
【解析】
利用導數構造函數exf(x)=x2+2.5x+c,求得f(x)=(x2+2.5x+1)e﹣x,再求導研究其單調性極值與最值并且畫出圖象即可得出.
∵f'(x)=e﹣x(2x+2.5)﹣f(x),
∴ex[f(′x)+f(x)]=2x+2.5,
∴exf(x)=x2+2.5x+c,
∵f(0)=1,∴1=0+0+c,解得c=1
∴f(x)=(x2+2.5x+1)e﹣x,
∴f′(x)=﹣(x2x
)e﹣x=﹣(x﹣1)(x
)e﹣x.
令f′(x)=0,解得x=1或x,
當x或x>1時,f′(x)<0,函數f(x)單調遞減,
當x<1時,f′(x)>0,函數f(x)單調遞減增,
可得:x=1時,函數f(x)取得極大值,x時,函數f(x)取得極小值,
∵f(﹣2)=0,f(﹣1)e,f(0)=1>0,
∴e<m≤0時,f(x)﹣m<0的解集中恰有唯一一個整數﹣1.
故m的取值范圍是(e,0],
故選:A.
科目:高中數學 來源: 題型:
【題目】已知,
,直線AD與直線BD相交于點D,直線BD的斜率減去直線AD的斜率的差是2,設D點的軌跡為曲線C.
求曲線C的方程;
已知直線l過點
,且與曲線C交于P,Q兩點
Q異于A,
,問在y軸上是否存在定點G,使得
?若存在,求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小李從網上購買了一件商品,快遞員計劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時間為下午5:30-6:00.快遞員到小李家時,如果小李未到家,則快遞員會電話聯系小李.若小李能在10分鐘之內到家,則快遞員等小李回來;否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班級甲、乙兩個小組各有10位同學,在一次期中考試中,兩個小組同學的數學成績如下:
甲組:94,69,73,86,74,75,86,88,97,98;
乙組:75,92,82,80,95,81,83,91,79,82.
畫出這兩個小組同學數學成績的莖葉圖,判斷哪一個小組同學的數學成績差異較大,并說明理由;
從這兩個小組數學成績在90分以上的同學中,隨機選取2人在全班介紹學習經驗,求選出的2位同學不在同一個小組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據說偉大的阿基米德逝世后,敵軍將領馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.
(1)試計算出圖案中圓柱與球的體積比;
(2)假設球半徑.試計算出圖案中圓錐的體積和表面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,其上焦點到直線
的距離為
.
(1)求橢圓的方程;
(2)過點的直線
交橢圓
于
,
兩點.試探究以線段
為直徑的圓是否過定點?若過,求出定點坐標,若不過,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發芽多少之間的關系進行研究,于是他在4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發芽數,得到如下資料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,求這2天發芽的種子數均不小于25的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數據,請根據這5天中的另三天的數據,求出關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:回歸直線的斜率和截距的最小二乘估計公式分別為,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,B1,B2是橢圓的短軸端點,P是橢圓上異于點B1,B2的一動點.當直線PB1的方程為
時,線段PB1的長為
.
(1)求橢圓的標準方程;
(2)設點Q滿足:QB1⊥PB1,QB2⊥PB2,求證:△PB1B2與△QB1B2的面積之比為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三國時期著名的數學家劉徽對推導特殊數列的求和公式很感興趣,創造并發展了許多算法,展現了聰明才智.他在《九章算術》“盈不足”章的第19題的注文中給出了一個特殊數列的求和公式.這個題的大意是:一匹良馬和一匹駑馬由長安出發至齊地,長安與齊地相距3000里(1里=500米),良馬第一天走193里,以后每天比前一天多走13里.駑馬第一天走97里,以后每天比前一天少走半里.良馬先到齊地后,馬上返回長安迎駑馬,問兩匹馬在第幾天相遇( )
A. 14天B. 15天C. 16天D. 17天
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com