日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
5.已知函數f(x)=$\frac{{x}^{2}+ax+4}{x}$(a>0).
(1)證明函數f(x)在(0,2]上是減函數,(2,+∞)上是增函數;
(2)若方程f(x)=0有且只有一個實數根,判斷函數g(x)=f(x)-4的奇偶性;
(3)在(2)的條件下探求方程f(x)=m(m≥8)的根的個數.

分析 (1)利用導數的正負,即可證明;
(2)求出g(x)=x+$\frac{4}{x}$,又g(x)的定義域為(-∞,0)∪(0,+∞)關于原點對稱,利用奇函數的定義進行判斷;
(3)由(2)知f(x)=m可化為x+$\frac{4}{x}$=m-4(m≥8),再分類討論,即可得出結論.

解答 證明:(1)由題意:f(x)=x+$\frac{4}{x}$+a,
∴f′(x)=$\frac{{x}^{2}-4}{{x}^{2}}$,
∴0<x<2時,f′(x)<0,x>2時,f′(x)>0,
∴函數f(x)在(0,2]上是減函數,(2,+∞)上是增函數          …(4分)
解:(2)由題意知方程x2+ax+4=0有且只有一個實數根
∴△=a2-16=0,
又a>0,∴a=4.…(5分)
此時f(x)=x+$\frac{4}{x}$+4,g(x)=x+$\frac{4}{x}$,
又g(x)的定義域為(-∞,0)∪(0,+∞)關于原點對稱,…(6分)
且g(-x)=-x-$\frac{4}{x}$=-g(x),…(7分)
∴g(x)是奇函數                                 …(8分)
(3)由(2)知f(x)=m可化為x+$\frac{4}{x}$=m-4(m≥8)…(9分)
又由(1)(2)知:
當m-4=4  即m=8時f(x)=m只有一解            …(10分)
當m-4>4即m>8時f(x)=m有兩解            …(11分)
綜上,當m=8時f(x)=m只有一解;當m>8時f(x)=m有兩解;                …(12分)

點評 本題考查函數的單調性與奇偶性,考查方程解的個數的判斷,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.若函數f(x)=x2+2(a-1)x+2在區間[-1,2]上單調,則實數a的取值范圍為(  )
A.[2,+∞)B.(-∞,-1]C.(-∞,-1]∪[2,+∞)D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.設命題p:?x∈R,都有ax2>-ax-1(a≠0)恒成立;命題q:圓x2+y2=a2與圓(x+3)2+(y-4)2=4外離.如果命題“p∨q”為真命題,“p∧q”為假命題,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知f(x)=$\frac{a•{2}^{x}+a+2}{{2}^{x}+1}$(x∈R),若f(x)滿足f(-x)=-f(x).
(1)求實數a的值;
(2)證明f(x)是R上的單調減函數(定義法).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.若函數f(x)=$\left\{\begin{array}{l}{-x+3,-1≤x≤1}\\{1+lo{g}_{({a}^{2}-1)}(2x),2≤x≤8}\end{array}\right.$的值域是[2,5],則實數a的取值是$±\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知集合A={0,1},B={x,y,z},則從集合A到集合B的映射可能有(  )種.
A.6B.8C.9D.12

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.某產品關稅與市場供應量P的關系近似地滿足:P(x)=2${\;}^{(1-kt){{(x-b)}{\;}^2}}}$(其中t為關稅的稅率,且t∈[0,$\frac{1}{2}}$],x為市場價格,b,k為正常數),當t=$\frac{1}{8}$時,市場供應量曲線如圖所示:
(1)根據函數圖象求k,b的值;
(2)若市場需求量Q,它近似滿足Q(x)=2${\;}^{(11-\frac{1}{2}x)}}$.當P=Q時的市場價格為均衡價格,為使均衡價格控制在不低于9元的范圍內,求稅率t的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.下列函數中,既是偶函數又在區間(0,+∞)上單調遞增的是(  )
A.$y=\frac{1}{x}$B.y=1g|x|C.y=cosxD.y=x2+2x

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知不等式mx2+2mx-8≥0有解,求m的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产伦精品一区二区三区在线 | 成年人性视频 | 色婷婷综合久久久久中文一区二 | 天天干狠狠操 | 日韩在线精品 | 国产精品视频一区二区三区四区国 | 精品国产乱码久久久久久久软件 | 日韩精品中文字幕一区二区三区 | 国产激情偷乱视频一区二区三区 | 国外成人在线视频 | 99国产精品久久久久老师 | 天天操天天干天天 | 91亚洲日本aⅴ精品一区二区 | 日韩aaa久久蜜桃av | 九九热精品免费视频 | 午夜精品久久久久久久久久久久 | 好姑娘影视在线观看高清 | 国产一区久久 | 日韩aaa | 亚洲黄色大片网站 | 精品久久久久久久久久久久久久 | 亚洲一区二区在线电影 | 日韩欧美在线播放 | 黄色免费观看 | 欧洲成人在线视频 | 亚洲成人免费在线观看 | 草b视频| 久久精品电影 | 亚洲精品一区二区三区 | 国产综合久久 | 午夜视频一区二区 | 亚洲美女在线视频 | 日本精品视频网站 | 国产一区二区免费视频 | 久草精品视频在线播放 | 狠狠操中文字幕 | 国产一区二区三区久久 | 一区二区三区四区在线 | 日本日韩中文字幕 | 欧美a一级| 国产区精品 |