(I)求異面直線與
所成的角;
(II)求平面與平面
所成的二面角;
(III)求點到平面
的距離.
20.解法一:
在長方體中,以
所在的直線為
軸,以
所在的直線為
軸,
所在的直線為
軸建立空間直角坐標系如圖。
由已知可得
。
又平面
,從而
與平面
所成的角為
,
又,
,
,
從而易得
(I)∵
∴=
即異面直線所成的角為
(II)易知平面的一個法向量
設
是平面
的一個法向量,
由
取
∴
即平面與平面
所成的二面角的大。ㄤJ角)為
(III)點到平面
的距離,即
在平面
的法向量
上的投影的絕對值,所以距離
=
所以點到平面
的距離為
解法二: (Ⅰ)連結B1D1,過F作B1D1的垂線,垂足為K,
∵BB1與兩底面ABCD,A1B1C1D1都垂直,
∴
又
因此 FK∥AE.
∴∠BFK 為異面直線BF與AE所成的角。
連結BK,由FK⊥面BDDB
得FK⊥BK。
從而 △BKF為Rt△
由得
FK==
=
又 BF=
∴cos∠BFK=。
∴異面直線BF與AE所成的角為arcos。
(Ⅱ)由于DA⊥面AA1B,由A作BF的垂線AG,垂足為G,連結DG,由三垂線定理知BG⊥DG。
∴∠AGD即為平面BDF與平面AA1B所成二面角的平面角
且∠DAG=90°,在平面AA1B中,延長BF與AA1交于點S。
∵F為A1B1的中點,A1FAB。
∴A1、F分別為SA、SB的中點。
即SA=2A1A=2=AB。
∴Rt△BAS為等腰直角三角形,垂足G點實為斜邊SB的中點F,即F、G重合,
易得AG=AF=SB=
,在Rt△BAS中,AD=
,
∴tan∠AGD=
∴∠AGD=arctan
即平面BDF與平面AA1B所成二面角(銳角)的大小為arctan
(Ⅲ)由(Ⅱ)知平面AFD是平面BDF與平面AA1B所成二面角的平面角所在的平面,
∴面AFD⊥面BDF。
在Rt△ADF中,由A作AH⊥DF于H,則AH即為點A到平面BDF的距離,
由 AH·DF=AD·AF,得
所以點A到平面BDF的距離為 。
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
2 |
3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖,已知長方體直線
與平面
所成的角為
,
垂直
于
,
為
的中點.
(I)求異面直線與
所成的角;
(II)求平面與平面
所成的二面角(銳角)的大;
(III)求點到平面
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com