【題目】如圖,在三棱錐中,
,
,
,
,
,
分別為線段
,
上的點(diǎn),且
,
.
(1)證明:;
(2)若,求二面角
的余弦值.
【答案】(1)見(jiàn)證明;(2)
【解析】
(1)證明BC⊥平面SAC,即可推出SC⊥平面ABC,從而得到MN⊥平面SCM,即可證明MN⊥SM.(2)以C為原點(diǎn),以,
,
為
軸,
軸,
軸的正方向建立空間直角坐標(biāo)系
,求出平面SAM和平面SMN的法向量,利用空間向量的夾角的余弦,求解二面角A﹣SM﹣N的余弦值.
(1)證明:由,
,且
,則
平面
,
平面
,故
,又
,
,則
平面
,
平面
,故
.
因?yàn)?/span>,
,所以
,故
.
又因?yàn)?/span>,所以
平面
.
又平面
,則
.
(2)解:由(1)知,,
,
兩兩相互垂直,
如圖是以為坐標(biāo)原點(diǎn),分別以
,
,
為
軸,
軸,
軸的正方向建立空間直角坐標(biāo)系
,
則,
,
,
,
,
,
,
.
設(shè)平面的法向量為
,則
,令
,得
.
設(shè)平面的法向量為
,
則,令
,則
,
,故
.
所以,
由圖可知二面角為鈍角,
故二面角的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的內(nèi)切圓分別與邊BC、CA、AB切于點(diǎn)D、E、F,AD與BE交于點(diǎn)P,設(shè)點(diǎn)P關(guān)于直線EF、FD、DE的對(duì)稱點(diǎn)分別X、Y、Z.證明:AX、BY、CZ三線共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若非負(fù)整數(shù)m、n在求和時(shí)恰進(jìn)位一次(十進(jìn)制下),則稱有序數(shù)對(duì)(m、n)為“好的”,那么,所有和為2014的好的有序數(shù)對(duì)的個(gè)數(shù)為__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx,其中a>0.曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線y=x+1垂直.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的極值和最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),拋物線
:
的焦點(diǎn)為
,射線
與拋物線
相交于點(diǎn)
,與其準(zhǔn)線相交于點(diǎn)
,則
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=4x與橢圓E:1(a>b>0)有一個(gè)公共焦點(diǎn)F.設(shè)拋物線C與橢圓E在第一象限的交點(diǎn)為M.滿足|MF|
.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P(1,)的直線交拋物線C于A、B兩點(diǎn),直線PO交橢圓E于另一點(diǎn)Q.若P為AB的中點(diǎn),求△QAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的離心率是
,過(guò)點(diǎn)
做斜率為
的直線
,橢圓
與直線
交于
兩點(diǎn),當(dāng)直線
垂直于
軸時(shí)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)變化時(shí),在
軸上是否存在點(diǎn)
,使得
是以
為底的等腰三角形,若存在求出
的取值范圍,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)的坐標(biāo)分別為
,三角形
的兩條邊
所在直線的斜率之積是
.
(I)求點(diǎn)的軌跡方程;
(II)設(shè)直線方程為
,直線
方程為
,直線
交
于
,點(diǎn)
關(guān)于
軸對(duì)稱,直線
與
軸相交于點(diǎn)
,求
面積
關(guān)于
的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購(gòu)令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)“樓市限購(gòu)令”贊成人數(shù)如下表.
月收入(單位百元) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問(wèn)是否有99%的把握認(rèn)為“月收入以5500元為分界點(diǎn)對(duì)“樓市限購(gòu)令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) | 月收入低于55百元的人數(shù) | 合計(jì) | |
贊成 | a=______________ | c=______________ | ______________ |
不贊成 | b=______________ | d=______________ | ______________ |
合計(jì) | ______________ | ______________ | ______________ |
(2)試求從年收入位于(單位:百元)的區(qū)間段的被調(diào)查者中隨機(jī)抽取2人,恰有1位是贊成者的概率。
參考公式:,其中
.
參考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com