【題目】在銳角△ABC中,a,b,c分別為內角A,B,C所對邊的邊長,且滿足a-2bsin A=0.
(1)求角B的大小;
(2)若a+c=5,且a>c,b=,求
·
的值.
【答案】(1);(2)1
【解析】
分析:(1)利用正弦定理化邊為角,從而得sinB的值;(2)由b及cosB的值,利用余弦定理列出關于a與c的關系式,利用完全平方公式變形后,將a+c的值代入,求出ac的值,將a+c=5與ac=6聯立,并根據a大于c,求出a與c的值,再由a,b及c的值,利用余弦定理求出cosA的值,然后將所求的式子利用平面向量的數量積運算法則化簡后,將b,c及cosA的值代入即可求出值.
詳解:(Ⅰ)∵a﹣2bsinA=0,
∴sinA﹣2sinBsinA=0,
∵sinA≠0,∴sinB=,
又B為銳角,則B=;
(Ⅱ)由(Ⅰ)可知B=,又b=
,
根據余弦定理,得b2=7=a2+c2﹣2accos,
整理得:(a+c)2﹣3ac=7,
∵a+c=5,∴ac=6,
又a>c,可得a=3,c=2,
∴cosA==
=
,
則=|
||
|cosA=cbcosA=2×
×
=1.
科目:高中數學 來源: 題型:
【題目】對于數列{an}、{bn},Sn為數列{an}的前n項和,且Sn+1﹣(n+1)=Sn+an+n,a1=b1=1,bn+1=3bn+2,n∈N* .
(1)求數列{an}、{bn}的通項公式;
(2)令cn= ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x),若存在常數a≠0,使得x取定義域內的每一個值,都有f(x)=﹣f(2a﹣x),則稱f(x)為“準奇函數”.給定下列函數:①f(x)= ,②f(x)=(x+1)2;③f(x)=x3;④f(x)=sin(x+1),其中的“準奇函數”是(寫出所有“準奇函數”的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓C: +
=1(a>b>0)的左右焦點分別為F1 , F2 , 離心率為
,以原點為圓心,以橢圓C的短半軸長為半徑的圓與直線x﹣y+
=0相切,過點F2的直線l與橢圓C相交于M,N兩點.
(1)求橢圓C的方程;
(2)若 =3
,求直線l的方程;
(3)求△F1MN面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(cosωx﹣sinωx,sinωx),
=(﹣cosωx﹣sinωx,2
cosωx),設函數f(x)=
+λ(x∈R)的圖象關于直線x=π對稱,其中ω,λ為常數,且ω∈(
,1)
(1)求函數f(x)的最小正周期;
(2)若y=f(x)的圖象經過點( ,0)求函數f(x)在區間[0,
]上的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A是單位圓x2+y2=1上的任意一點,l是過點A與x軸垂直的直線,D是直線l與x軸的交點,點M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當點A在圓上運動時,記點M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標;
(Ⅱ)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sinωx+cosωx(ω>0)的圖象與x軸交點的橫坐標構成一個公差為
的等差數列,把函數f(x)的圖象沿x軸向左平移
個單位,得到函數g(x)的圖象.關于函數g(x),下列說法正確的是( )
A.在[ ,
]上是增函數
B.其圖象關于直線x=﹣ 對稱
C.函數g(x)是奇函數
D.當x∈[ ,
π]時,函數g(x)的值域是[﹣2,1]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】4月23日是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查,下面是根據調查結果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書謎”,低于60分鐘的學生稱為“非讀書謎”
(1)求的值并估計全校3000名學生中讀書謎大概有多少?(將頻率視為概率)
(2)根據已知條件完成下面2×2的列聯表,并據此判斷是否有99%的把握認為“讀書謎”與性別有關?
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 | ||
合計 |
附:.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設隨機變量ξ服從正態分布N(0,1),則下列結論正確的是( )
①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);②P(|ξ|<a)=2P(ξ<a)-1(a>0);③P(|ξ|<a)=1-2P(ξ<a)(a>0);④P(|ξ|<a)=1-P(|ξ|≥a)(a>0).
A. ①② B. ②③
C. ①④ D. ②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com