日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知橢圓C的方程為
x2
9-k
+
y2
k-1
=1

(1)求k的取值范圍;         
(2)若橢圓C的離心率e=
6
7
,求k的值.
(1)∵方程
x2
9-k
+
y2
k-1
=1
表示橢圓,
則 
9-k>0
k-1>0
9-k≠k-1
,
解得 k∈(1,5)∪(5,9)
(2)①當9-k>k-1時,依題意可知a=
9-k
,b=
k-1

∴c=
10-2k

c
a
=
6
7

10-2k
9-k
=
6
7

∴k=2;
②當9-k<k-1時,依題意可知b=
9-k
,a=
k-1

∴c=
2k-10

c
a
=
6
7

2k-10
k-1
=
6
7

∴k=8;
∴k的值為2或8.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,橢圓C的左、右焦點分別為F1(-1,0)、F2(1,0),斜率為k(k≠0)的直線l經過點F2,交橢圓于A、B兩點,且△ABF1的周長為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點E為x軸上一點,
AF2
F2B
(λ∈R),若
F1F2
⊥(
EA
BE
)
,求點E的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•崇明縣二模)已知橢圓C的方程為
x2
a2
+
y2
2
= 1
(a>0),其焦點在x軸上,點Q(
2
2
7
2
)
為橢圓上一點.
(1)求該橢圓的標準方程;
(2)設動點P(x0,y0)滿足
OP
=
OM
+2
ON
,其中M、N是橢圓C上的點,直線OM與ON的斜率之積為-
1
2
,求證:
x
2
0
+2
y
2
0
為定值;
(3)在(2)的條件下探究:是否存在兩個定點A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•河北區一模)已知橢圓C的方程為 
x2
a2
+
y2
b2
=1 
(a>b>0),過其左焦點F1(-1,0)斜率為1的直線交橢圓于P、Q兩點.
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共線,求橢圓C的方程;
(Ⅱ)已知直線l:x+y-
1
2
=0,在l上求一點M,使以橢圓的焦點為焦點且過M點的雙曲線E的實軸最長,求點M的坐標和此雙曲線E的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的方程為
x 2
4
+
y2
3
=1,過C的右焦點F的直線與C相交于A、B兩點,向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共線,則直線AB的方程是( 。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓C的方程為
x 2
4
+
y2
3
=1,過C的右焦點F的直線與C相交于A、B兩點,向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共線,則直線AB的方程是(  )
A.2x-y-2=0B.2x+y-2=0C.2x-y+2=0D.2x+y+2=0

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产视频一二区 | 成人精品视频99在线观看免费 | 欧美视频在线观看不卡 | 二区免费 | 久久精品免费一区二区 | 欧美成人a | 久久精品小视频 | 免费福利在线 | 久久久久国产视频 | 一区二区国产精品 | 欧美午夜精品久久久久免费视 | 久久精品国产一区二区电影 | 久久国产香蕉 | 精品国产乱码久久久久久1区2区 | 天天综合7799精品影视 | www久久久久久久 | 亚洲国产日韩a在线播放性色 | 亚洲激情一区二区 | 超级乱淫片国语对白免费视频 | 欧美xxxⅹ性欧美大片 | 最新国产中文字幕 | 天堂av一区二区 | 免费xxxx大片国产在线 | 色呦呦网 | 日本黄色一区 | 亚洲精选免费视频 | 色黄视频在线观看 | www久| 日韩av一区二区在线 | 91免费观看视频 | 日韩一区二区免费视频 | 羞羞视频在线免费 | 国产a√ | 国产 日韩 欧美 制服 另类 | 国产一区二区三区视频在线观看 | 国产真实乱全部视频 | 日韩精品免费看 | 青草视频在线播放 | 91成人在线 | 久久三区| 久久午夜影院 |