【題目】下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是( )
A.y=3﹣x
B.y=x2+1
C.y=
D.y=﹣x2+1
【答案】B
【解析】解:若y=3﹣x,則y′=﹣1<0在區(qū)間(0,2)上恒成立,故區(qū)間(0,2)上,函數(shù)為減函數(shù);
若y=x2+1,則y′=2x>0在區(qū)間(0,2)上恒成立,故區(qū)間(0,2)上,函數(shù)為增函數(shù);
若y= ,則y′=﹣
<0在區(qū)間(0,2)上恒成立,故區(qū)間(0,2)上,函數(shù)為減函數(shù);
若y=﹣x2+1,則y′=﹣2x<0在區(qū)間(0,2)上恒成立,故區(qū)間(0,2)上,函數(shù)為減函數(shù);
故選:B
【考點精析】本題主要考查了函數(shù)單調(diào)性的判斷方法和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞減才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)g(x)=3x , h(x)=9x .
(1)解方程:h(x)﹣8g(x)﹣h(1)=0;
(2)令p(x)= ,求值:p(
)+p(
)+…+p(
)+p(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=loga(x+1),(a>0,a≠1)的圖象經(jīng)過點(﹣ ,﹣2),圖象上有三個點A,B,C,它們的橫坐標(biāo)依次為t﹣1,t,t+1,(t≥1),記三角形ABC的面積為S(t),
(1)求f(x)的表達(dá)式;
(2)求S(1);
(3)是否存在正整數(shù)m,使得對于一切不小于1的t,都有S(t)<m,若存在求的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)y=x3m﹣9(m∈N*)的圖象關(guān)于y軸對稱,且在(0,+∞)上函數(shù)值隨x增大而減小.
(1)求m的值;
(2)求滿足(a+1) <(3﹣2a)
的a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)的單調(diào)性并證明;
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高新技術(shù)公司要生產(chǎn)一批新研發(fā)的款手機和
款手機,生產(chǎn)一臺
款手機需要甲材料
,乙材料
,并且需要花費1天時間,生產(chǎn)一臺
款手機需要甲材料
,乙材料
,也需要1天時間,已知生產(chǎn)一臺
款手機利潤是1000元,生產(chǎn)一臺
款手機的利潤是2000元,公司目前有甲、乙材料各,則在
不超過120天的情況下,公司生產(chǎn)兩款手機的最大利潤是__________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P(﹣2,3)是函數(shù)y= 圖象上的點,Q是雙曲線在第四象限這一分支上的動點,過點Q作直線,使其與雙曲線y=
只有一個公共點,且與x軸、y軸分別交于點C、D,另一條直線y=
x+6與x軸、y軸分別交于點A、B.則
(1)O為坐標(biāo)原點,三角形OCD的面積為 .
(2)四邊形ABCD面積的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 證明:PA⊥BD;
(Ⅱ) 設(shè)PD=AD=1,求直線PC與平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn , 已知a3=24,a6=18.
(Ⅰ) 求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn;
(Ⅲ)當(dāng)n為何值時,Sn最大,并求Sn的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com