【題目】已知數列中,
,且
對任意正整數
都成立,數列
的前
項和為
.
(1)若,且
,求
;
(2)是否存在實數,使數列
是公比為1的等比數列,且任意相鄰三項
按某順序排列后成等差數列,若存在,求出所有
的值;若不存在,請說明理由;
(3)若,求
.(用
表示).
【答案】(1) ;(2)
;(3)
.
【解析】試題分析:
(1)由題意求得首項,公差
,結合等差數列前n項和公式列方程可得
;
(2)假設存在滿足題意的實數k,分類討論可得;
(3)結合題意分類討論,然后分組求和可得.
試題解析:
(1)時,
,
所以數列是等差數列,
此時首項,公差
,
數列的前
項和是
;
故,得
;
(2)設數列是等比數列,則它的公比
,所以
,
①為等差中項,則
,
即,解得
,不合題意;
②為等差中項,則
,
即,化簡得:
,解得
或
(舍去);
③若為等差中項,則
,
即,化簡得:
,解得
;
;
綜上可得,滿足要求的實數有且僅有一個,
;
(3),則
,
,
當是偶數時,
,
當是奇數時,
,
也適合上式,
綜上可得, .
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為
(
為參數),以原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
寫出曲線
的極坐標的方程以及曲線
的直角坐標方程;
若過點
(極坐標)且傾斜角為
的直線
與曲線
交于
,
兩點,弦
的中點為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓經過點
,離心率
,直線
的方程為
.
求橢圓
的方程;
是經過右焦點
的任一弦(不經過點
),設直線
與直線
相交于點
,記
,
,
的斜率為
,
,
.問:是否存在常數
,使得
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M,N,P分別是B1B,B1C1 , CD的中點,則MN與D1P所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】①一個命題的逆命題為真,它的否命題也一定為真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數列”的充要條件.
③ 是
的充要條件;
④“am2<bm2”是“a<b”的充分必要條件.
以上說法中,判斷錯誤的有 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某食品廠需要定期購買食品配料,該廠每天需要食品配料200千克,配料的價格為1.8元/千克,每次購買配料需支付運費236元,每次購買來的配料還需支付保管費用,其標準如下:7天以內(含7天),無論重量多少,均按10元/天支付;超出7天以外的天數,根據實際剩余配料的重量,以每天0.03元/千克支付.
(1)當9天購買一次配料時,求該廠用于配料的保管費用是多少元?
(2)設該廠天購買一次配料,求該廠在這
天中用于配料的總費用
(元)關于
的函數關系式,并求該廠多少天購買一次配料才能使平均每天支付的費用最少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com