【題目】某工廠每日生產一種產品噸,每日生產的產品當日銷售完畢,日銷售額為
萬元,產品價格隨著產量變化而有所變化,經過一段時間的產銷,得到了
,
的一組統計數據如下表:
(1)請判斷與
中,哪個模型更適合刻畫
,
之間的關系?可從函數增長趨勢方面給出簡單的理由;
(2)根據你的判斷及下面的數據和公式,求出關于
的回歸方程,并估計當日產量
時,日銷售額是多少?
,
,
,
.
線性回歸方程中,
,
.
科目:高中數學 來源: 題型:
【題目】已知函數,其中
是自然對數的底數.
(1)若關于的不等式
在
上恒成立,求實數
的取值范圍;
(2)已知正數滿足:存在
,使得
成立.試比較
與
的大小,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以原點
為極點,以
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,
.
(1)當時,判斷曲線
與曲線
的位置關系;
(2)當曲線上有且只有一點到曲線
的距離等于
時,求曲線
上到曲線
距離為
的點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)在復數范圍內解方程(
為虛數單位)
(2)設是虛數,
是實數,且
(i)求的值及
的實部的取值范圍;
(ii)設,求證:
為純虛數;
(iii)在(ii)的條件下求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點M為棱AB的中點,AB=2,AD=,∠BAD=90°.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)求異面直線BC與MD所成角的余弦值;
(Ⅲ)求直線CD與平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,平面
.
(1)證明:平面
;
(2)過點作一平行于平面
的截面,畫出該截面,說明理由,并求夾在該截面與平面
之間的幾何體的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com