【題目】采用系統(tǒng)抽樣方法從960人中抽取32人做問卷調(diào)查,為此將他們隨即編號為1,2…960,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為5,抽到的32人中,編號落入?yún)^(qū)間[1,450]的人做問卷A,編號落入?yún)^(qū)間[451,750]的人做問卷B,其余的人做問卷C,則抽到的32人中,做問卷C的人數(shù)為( )
A.15
B.10
C.9
D.7
【答案】D
【解析】解:∵960÷32=30,∴由題意可得抽到的號碼構(gòu)成以5為首項、以30為公差的等差數(shù)列,
且此等差數(shù)列的通項公式為an=5+(n﹣1)30=30n﹣25.
落人區(qū)間[751,960]的人做問卷C,
由 751≤30n﹣25≤960,
即776≤30n≤985
解得25 ≤n≤32
.
再由n為正整數(shù)可得26≤n≤32,
∴做問卷C的人數(shù)為32﹣26+1=7,
故選:D.
由題意可得抽到的號碼構(gòu)成以5為首項、以30為公差的等差數(shù)列,求得此等差數(shù)列的通項公式為an=5+(n﹣1)30=30n﹣25,由751≤30n﹣25≤981求得正整數(shù)n的個數(shù),即為所求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+(2b﹣1)x+6b﹣a為偶函數(shù),且f(x+1)﹣f(x)=2x+1.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(x)+λx,求函數(shù)g(x)在[0,1]內(nèi)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項為正數(shù)的數(shù)列{an}的前n項和為Sn , 且滿足:Sn= an2+
an+
(n∈N*)
(1)求an
(2)設(shè)數(shù)列{ }的前n項和為Tn , 證明:對一切正整數(shù)n,都有Tn<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V=
,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓
的左、右焦點,
為坐標(biāo)原點,點
在橢圓上,線段
與
軸的交點為
,且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)圓是以
為直徑的圓,直線
與圓
相切,并與橢圓交于不同的兩點
,
,當(dāng)
,且滿足
時,求
的面積
的取值范圍.
請考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個題目計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù),
.
(1)若曲線在點
處的切線與直線
垂直,求
的值;
(2)若存在極小值
時,不等式
恒成立,求實數(shù)
的取值范圍;
(3)當(dāng)時,如果存在兩個不相等的正數(shù)
,使得
,求證:
.
請考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個題目計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,甲向如圖1所示的平面區(qū)域內(nèi)隨機擲點、乙向如圖2所示的平面區(qū)域內(nèi)隨機擲點,假設(shè)點落在區(qū)域內(nèi)任意一點的可能性相同.已知圖1中小圓的半徑是大圓半徑的二分之一,圖2中小正方形的頂點為大正方形各邊的中點.
(1)甲、乙各擲點一次,求至少有一人擲點落在陰影區(qū)域的概率;
(2)甲、乙各擲點兩次,記點落在陰影區(qū)域的次數(shù)為,求
的分布列和數(shù)學(xué)期望.
圖1圖2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在
處的切線的斜率為1.
(1)如果常數(shù),求函數(shù)
在區(qū)間
上的最大值;
(2)對于,如果方程
在
上有且只有一個解,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù),
).以原點
為極點,以
軸正半軸為極軸,與直角坐標(biāo)系
取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線
的極坐標(biāo)方程為
.
(Ⅰ)設(shè)為曲線
上任意一點,求
的取值范圍;
(Ⅱ)若直線與曲線
交于兩點
,
,求
的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com