【題目】已知橢圓:
的離心率
,左、右焦點分別為
、
,拋物線
的焦點
恰好是該橢圓的一個頂點.
(1)求橢圓的方程;
(2)已知直線:
與圓
:
相切,且直線
與橢圓相交于
、
兩點,求
的值.
科目:高中數學 來源: 題型:
【題目】某市房產中心數據研究顯示,2018年該市新建住宅銷售均價如下表.3月至7月房價上漲過快,為抑制房價過快上漲,政府從8月份開始出臺了相關限購政策,10月份開始房價得到了很好的抑制.
均價(萬元/ | 0.95 | 0.98 | 1.11 | 1.12 | 1.20 | 1.22 | 1.32 | 1.34 | 1.16 | 1.06 |
月份 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
(Ⅰ)請建立3月至7月線性回歸模型(保留小數點后3位),并預測若政府不宏觀調控,12月份該市新建住宅銷售均價;
(Ⅱ)試用相關系數說明3月至7月各月均價(萬元/
)與月份
之間可用線性回歸模型(保留小數點后2位)
參考數據:,
,
,
,
回歸方程斜率和截距最小二乘法估計公式;
相關系數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的參數方程為
(
為參數),直線
經過點
且傾斜角為
.
(1)求曲線的極坐標方程和直線
的參數方程;
(2)已知直線與曲線
交于
,滿足
為
的中點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,點
,點
,動圓
與
軸相切于點
,過點
的直線
與圓
相切于點
,過點
的直線
與圓
相切于點
(
均不同于點
),且
與
交于點
,設點
的軌跡為曲線
.
(1)證明:為定值,并求
的方程;
(2)設直線與
的另一個交點為
,直線
與
交于
兩點,當
三點共線時,求四邊形
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖兩個同心球,球心均為點,其中大球與小球的表面積之比為3:1,線段
與
是夾在兩個球體之間的內弦,其中
兩點在小球上,
兩點在大球上,兩內弦均不穿過小球內部.當四面體
的體積達到最大值時,此時異面直線
與
的夾角為
,則
( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com