如圖,在平面直角坐標系中,點
,直線
。設圓
的半徑為
,圓心在
上。
(1)若圓心也在直線
上,過點
作圓
的切線,求切線的方程;
(2)若圓上存在點
,使
,求圓心
的橫坐標
的取值范圍。.
(1)或
;(2)
.
解析試題分析:(1)由題設點,又
也在直線
上,點
滿足直線
的方程,從而求出圓的方程,可將切線方程可設為
,則圓心到切線的距離等于圓的半徑,即可求出切線的方程;(2)設點
,
,
,
,
,
即
,又點
在圓
上,
,
點為
與
的交點,
若存在這樣的點,則
與
有交點,
即圓心之間的距離滿足:
,從而求出
的取值范圍.
試題解析:(1)由題設點,又
也在直線
上,
,由題,過A點切線方程可設為
,
即,則
,解得:
,
又當斜率不存在時,也與圓相切,∴所求切線為或
,
即或
(2)設點,
,
,
,
,
即
,又點
在圓
上,
,
點為
與
的交點,
若存在這樣的點,則
與
有交點,
即圓心之間的距離滿足:
,
即
,
解得:
考點:本題主要考查了圓的標準方程,直線與圓的位置關系,圓與圓的位置關系,以及兩點間的距離公式,解題的關鍵是抓住直線與圓,圓與圓的位置關系.
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在x軸上,離心率。它有一個頂點恰好是拋物線
=4y的焦點。過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且
。
(Ⅰ)求動點C的軌跡E的方程;
(Ⅱ)設橢圓的左右頂點分別為A,B,直線AC(C點不同于A,B)與直線交于點R,D為線段RB的中點。試判斷直線CD與曲線E的位置關系,并證明你的結論。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,圓:
.
(Ⅰ)若圓與
軸相切,求圓
的方程;
(Ⅱ)已知,圓C與
軸相交于兩點
(點
在點
的左側).過點
任作一條直線與圓
:
相交于兩點
.問:是否存在實數
,使得
?若存在,求出實數
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L⊥直線AB。點P是圓O上異于A、B的任意一點,直線PA、PB分別交L與M、N點。
試建立適當的直角坐標系,解決下列問題:
(1)若∠PAB=30°,求以MN為直徑的圓方程;
(2)當點P變化時,求證:以MN為直徑的圓必過圓O內的一定點。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于常數λ(λ>0).求動點M的軌跡方程,說明它表示什么曲線。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com